metric.py 4.86 KB
Newer Older
chenych's avatar
chenych committed
1
# Copyright 2025 HuggingFace Inc., THUDM, and the LlamaFactory team.
chenych's avatar
chenych committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#
# This code is inspired by the HuggingFace's transformers library and the THUDM's ChatGLM implementation.
# https://github.com/huggingface/transformers/blob/v4.40.0/examples/pytorch/summarization/run_summarization.py
# https://github.com/THUDM/ChatGLM-6B/blob/main/ptuning/main.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from dataclasses import dataclass
chenych's avatar
chenych committed
20
from typing import TYPE_CHECKING, Optional
chenych's avatar
chenych committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

import numpy as np
import torch
from transformers.utils import is_jieba_available, is_nltk_available

from ...extras.constants import IGNORE_INDEX
from ...extras.misc import numpify
from ...extras.packages import is_rouge_available


if TYPE_CHECKING:
    from transformers import EvalPrediction, PreTrainedTokenizer


if is_jieba_available():
    import jieba  # type: ignore


if is_nltk_available():
chenych's avatar
chenych committed
40
    from nltk.translate.bleu_score import SmoothingFunction, sentence_bleu  # type: ignore
chenych's avatar
chenych committed
41
42
43


if is_rouge_available():
chenych's avatar
chenych committed
44
    from rouge_chinese import Rouge  # type: ignore
chenych's avatar
chenych committed
45
46
47


def eval_logit_processor(logits: "torch.Tensor", labels: "torch.Tensor") -> "torch.Tensor":
chenych's avatar
chenych committed
48
    r"""Compute the token with the largest likelihood to reduce memory footprint."""
chenych's avatar
chenych committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
    if isinstance(logits, (list, tuple)):
        if logits[0].dim() == 3:  # (batch_size, seq_len, vocab_size)
            logits = logits[0]
        else:  # moe models have aux loss
            logits = logits[1]

    if logits.dim() != 3:
        raise ValueError("Cannot process the logits.")

    return torch.argmax(logits, dim=-1)


@dataclass
class ComputeAccuracy:
chenych's avatar
chenych committed
63
    r"""Compute accuracy and support `batch_eval_metrics`."""
luopl's avatar
luopl committed
64

chenych's avatar
chenych committed
65
    def _dump(self) -> Optional[dict[str, float]]:
chenych's avatar
chenych committed
66
67
68
69
70
71
72
73
74
75
        result = None
        if hasattr(self, "score_dict"):
            result = {k: float(np.mean(v)) for k, v in self.score_dict.items()}

        self.score_dict = {"accuracy": []}
        return result

    def __post_init__(self):
        self._dump()

chenych's avatar
chenych committed
76
    def __call__(self, eval_preds: "EvalPrediction", compute_result: bool = True) -> Optional[dict[str, float]]:
chenych's avatar
chenych committed
77
78
79
80
81
82
83
84
85
86
87
88
        preds, labels = numpify(eval_preds.predictions), numpify(eval_preds.label_ids)
        for i in range(len(preds)):
            pred, label = preds[i, :-1], labels[i, 1:]
            label_mask = label != IGNORE_INDEX
            self.score_dict["accuracy"].append(np.mean(pred[label_mask] == label[label_mask]))

        if compute_result:
            return self._dump()


@dataclass
class ComputeSimilarity:
chenych's avatar
chenych committed
89
    r"""Compute text similarity scores and support `batch_eval_metrics`.
luopl's avatar
luopl committed
90

chenych's avatar
chenych committed
91
92
93
94
95
    Wraps the tokenizer into metric functions, used in CustomSeq2SeqTrainer.
    """

    tokenizer: "PreTrainedTokenizer"

chenych's avatar
chenych committed
96
    def _dump(self) -> Optional[dict[str, float]]:
chenych's avatar
chenych committed
97
98
99
100
101
102
103
104
105
106
        result = None
        if hasattr(self, "score_dict"):
            result = {k: float(np.mean(v)) for k, v in self.score_dict.items()}

        self.score_dict = {"rouge-1": [], "rouge-2": [], "rouge-l": [], "bleu-4": []}
        return result

    def __post_init__(self):
        self._dump()

chenych's avatar
chenych committed
107
    def __call__(self, eval_preds: "EvalPrediction", compute_result: bool = True) -> Optional[dict[str, float]]:
chenych's avatar
chenych committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
        preds, labels = numpify(eval_preds.predictions), numpify(eval_preds.label_ids)

        preds = np.where(preds != IGNORE_INDEX, preds, self.tokenizer.pad_token_id)
        labels = np.where(labels != IGNORE_INDEX, labels, self.tokenizer.pad_token_id)

        decoded_preds = self.tokenizer.batch_decode(preds, skip_special_tokens=True)
        decoded_labels = self.tokenizer.batch_decode(labels, skip_special_tokens=True)

        for pred, label in zip(decoded_preds, decoded_labels):
            hypothesis = list(jieba.cut(pred))
            reference = list(jieba.cut(label))

            if len(" ".join(hypothesis).split()) == 0 or len(" ".join(reference).split()) == 0:
                result = {"rouge-1": {"f": 0.0}, "rouge-2": {"f": 0.0}, "rouge-l": {"f": 0.0}}
            else:
                rouge = Rouge()
                scores = rouge.get_scores(" ".join(hypothesis), " ".join(reference))
                result = scores[0]

            for k, v in result.items():
                self.score_dict[k].append(round(v["f"] * 100, 4))

            bleu_score = sentence_bleu([list(label)], list(pred), smoothing_function=SmoothingFunction().method3)
            self.score_dict["bleu-4"].append(round(bleu_score * 100, 4))

        if compute_result:
            return self._dump()