trainer.py 2.76 KB
Newer Older
chenych's avatar
chenych committed
1
# Copyright 2025 the LlamaFactory team.
chenych's avatar
chenych committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from types import MethodType
chenych's avatar
chenych committed
16
from typing import TYPE_CHECKING, Optional
chenych's avatar
chenych committed
17

luopl's avatar
luopl committed
18
import torch
chenych's avatar
chenych committed
19
from transformers import Trainer
luopl's avatar
luopl committed
20
from typing_extensions import override
chenych's avatar
chenych committed
21

luopl's avatar
luopl committed
22
23
from ...extras.packages import is_transformers_version_greater_than
from ..callbacks import SaveProcessorCallback
chenych's avatar
chenych committed
24
25
26
27
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler


if TYPE_CHECKING:
chenych's avatar
chenych committed
28
    from transformers import ProcessorMixin
chenych's avatar
chenych committed
29
30
31
32
33

    from ...hparams import FinetuningArguments


class CustomTrainer(Trainer):
chenych's avatar
chenych committed
34
    r"""Inherit Trainer for custom optimizer."""
chenych's avatar
chenych committed
35
36
37
38

    def __init__(
        self, finetuning_args: "FinetuningArguments", processor: Optional["ProcessorMixin"], **kwargs
    ) -> None:
luopl's avatar
luopl committed
39
40
41
        if is_transformers_version_greater_than("4.46"):
            kwargs["processing_class"] = kwargs.pop("tokenizer")

chenych's avatar
chenych committed
42
43
44
45
46
47
48
        super().__init__(**kwargs)
        self.finetuning_args = finetuning_args

        if processor is not None:
            self.add_callback(SaveProcessorCallback(processor))

        if finetuning_args.use_badam:
luopl's avatar
luopl committed
49
            from badam import BAdamCallback, clip_grad_norm_old_version  # type: ignore
chenych's avatar
chenych committed
50
51
52
53

            self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_old_version, self.accelerator)
            self.add_callback(BAdamCallback)

luopl's avatar
luopl committed
54
    @override
chenych's avatar
chenych committed
55
56
57
58
59
    def create_optimizer(self) -> "torch.optim.Optimizer":
        if self.optimizer is None:
            self.optimizer = create_custom_optimizer(self.model, self.args, self.finetuning_args)
        return super().create_optimizer()

luopl's avatar
luopl committed
60
    @override
chenych's avatar
chenych committed
61
62
63
64
65
    def create_scheduler(
        self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None
    ) -> "torch.optim.lr_scheduler.LRScheduler":
        create_custom_scheduler(self.args, num_training_steps, optimizer)
        return super().create_scheduler(num_training_steps, optimizer)
luopl's avatar
luopl committed
66
67

    @override
luopl's avatar
luopl committed
68
69
70
71
72
    def _get_train_sampler(self) -> Optional["torch.utils.data.Sampler"]:
        if self.finetuning_args.disable_shuffling:
            return torch.utils.data.SequentialSampler(self.train_dataset)

        return super()._get_train_sampler()
chenych's avatar
chenych committed
73
74
75
76

    @override
    def compute_loss(self, model, inputs, *args, **kwargs):
        return super().compute_loss(model, inputs, *args, **kwargs)