trainer.py 13.1 KB
Newer Older
chenych's avatar
chenych committed
1
# Copyright 2025 HuggingFace Inc. and the LlamaFactory team.
chenych's avatar
chenych committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#
# This code is inspired by the HuggingFace's TRL library.
# https://github.com/huggingface/trl/blob/v0.8.0/trl/trainer/dpo_trainer.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import warnings
from collections import defaultdict
from contextlib import nullcontext
from types import MethodType
chenych's avatar
chenych committed
22
from typing import TYPE_CHECKING, Literal, Optional, Union
chenych's avatar
chenych committed
23
24
25
26
27
28

import torch
import torch.nn.functional as F
from transformers import Trainer
from trl import DPOTrainer
from trl.trainer import disable_dropout_in_model
luopl's avatar
luopl committed
29
from typing_extensions import override
chenych's avatar
chenych committed
30
31

from ...extras.constants import IGNORE_INDEX
chenych's avatar
chenych committed
32
from ...extras.packages import is_transformers_version_greater_than
luopl's avatar
luopl committed
33
34
from ..callbacks import SaveProcessorCallback
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler, get_batch_logps, nested_detach
chenych's avatar
chenych committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52


if TYPE_CHECKING:
    from transformers import PreTrainedModel, ProcessorMixin

    from ...hparams import FinetuningArguments


class CustomDPOTrainer(DPOTrainer):
    def __init__(
        self,
        model: Union["PreTrainedModel", torch.nn.Module],
        ref_model: Optional[Union["PreTrainedModel", torch.nn.Module]],
        finetuning_args: "FinetuningArguments",
        processor: Optional["ProcessorMixin"],
        disable_dropout: bool = True,
        **kwargs,
    ):
luopl's avatar
luopl committed
53
54
55
        if is_transformers_version_greater_than("4.46"):
            kwargs["processing_class"] = kwargs.pop("tokenizer")

chenych's avatar
chenych committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
        if disable_dropout:
            disable_dropout_in_model(model)
            if ref_model is not None:
                disable_dropout_in_model(ref_model)

        self.finetuning_args = finetuning_args
        self.f_divergence_type = "reverse_kl"
        self.reference_free = False
        self.use_dpo_data_collator = True  # hack to avoid warning
        self.generate_during_eval = False  # disable at evaluation
        self.label_pad_token_id = IGNORE_INDEX
        self.padding_value = 0
        self.is_encoder_decoder = model.config.is_encoder_decoder
        self.precompute_ref_log_probs = False
        self._precomputed_train_ref_log_probs = False
        self._precomputed_eval_ref_log_probs = False
        self._peft_has_been_casted_to_bf16 = False

        self.ref_model = ref_model
        self._stored_metrics = defaultdict(lambda: defaultdict(list))

        # dpo hyperparams
        self.beta = finetuning_args.pref_beta
        self.loss_type = finetuning_args.pref_loss
        self.ftx_gamma = finetuning_args.pref_ftx
        self.label_smoothing = finetuning_args.dpo_label_smoothing
        self.simpo_gamma = finetuning_args.simpo_gamma

        Trainer.__init__(self, model=model, **kwargs)
luopl's avatar
luopl committed
85
        self.model_accepts_loss_kwargs = False  # overwrite trainer's default behavior
chenych's avatar
chenych committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
        if not hasattr(self, "accelerator"):
            raise AttributeError("Please update `transformers`.")

        warnings.simplefilter("ignore")  # remove gc warnings on ref model

        if ref_model is not None:
            if self.is_deepspeed_enabled:
                if not (
                    getattr(ref_model, "is_loaded_in_8bit", False) or getattr(ref_model, "is_loaded_in_4bit", False)
                ):  # quantized models are already set on the correct device
                    self.ref_model = self._prepare_deepspeed(self.ref_model)
            else:
                self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True)
                self.ref_model.eval()

        if processor is not None:
            self.add_callback(SaveProcessorCallback(processor))

        if finetuning_args.use_badam:
luopl's avatar
luopl committed
105
            from badam import BAdamCallback, clip_grad_norm_old_version  # type: ignore
chenych's avatar
chenych committed
106
107
108
109

            self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_old_version, self.accelerator)
            self.add_callback(BAdamCallback)

luopl's avatar
luopl committed
110
    @override
chenych's avatar
chenych committed
111
112
113
114
115
    def create_optimizer(self) -> "torch.optim.Optimizer":
        if self.optimizer is None:
            self.optimizer = create_custom_optimizer(self.model, self.args, self.finetuning_args)
        return super().create_optimizer()

luopl's avatar
luopl committed
116
    @override
chenych's avatar
chenych committed
117
118
119
120
121
122
    def create_scheduler(
        self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None
    ) -> "torch.optim.lr_scheduler.LRScheduler":
        create_custom_scheduler(self.args, num_training_steps, optimizer)
        return super().create_scheduler(num_training_steps, optimizer)

luopl's avatar
luopl committed
123
124
125
126
127
128
129
    @override
    def _get_train_sampler(self) -> Optional["torch.utils.data.Sampler"]:
        if self.finetuning_args.disable_shuffling:
            return torch.utils.data.SequentialSampler(self.train_dataset)

        return super()._get_train_sampler()

luopl's avatar
luopl committed
130
    @override
chenych's avatar
chenych committed
131
132
133
    def get_batch_samples(self, *args, **kwargs):
        r"""Replace the method of DPO Trainer with the one of the standard Trainer."""
        return Trainer.get_batch_samples(self, *args, **kwargs)
luopl's avatar
luopl committed
134

chenych's avatar
chenych committed
135
    def odds_ratio_loss(self, chosen_logps: "torch.Tensor", rejected_logps: "torch.Tensor") -> "torch.Tensor":
chenych's avatar
chenych committed
136
        r"""Compute ORPO's odds ratio (OR) loss for batched log probabilities of the policy model."""
chenych's avatar
chenych committed
137
138
139
140
141
142
143
144
145
        log_odds = (chosen_logps - rejected_logps) - (
            torch.log1p(-torch.exp(chosen_logps)) - torch.log1p(-torch.exp(rejected_logps))
        )
        sft_loss = -chosen_logps
        odds_ratio_loss = -F.logsigmoid(log_odds)
        orpo_loss = sft_loss + self.beta * odds_ratio_loss
        return orpo_loss

    def simpo_loss(self, chosen_logps: "torch.Tensor", rejected_logps: "torch.Tensor") -> "torch.Tensor":
chenych's avatar
chenych committed
146
        r"""Compute SimPO loss for batched log probabilities of the policy model."""
chenych's avatar
chenych committed
147
148
149
150
151
152
153
154
155
156
157
158
        pi_logratios = chosen_logps - rejected_logps
        gamma_logratios = self.simpo_gamma / self.beta
        logits = pi_logratios - gamma_logratios
        simpo_loss = -F.logsigmoid(self.beta * logits)
        return simpo_loss

    def compute_preference_loss(
        self,
        policy_chosen_logps: "torch.Tensor",
        policy_rejected_logps: "torch.Tensor",
        reference_chosen_logps: Optional["torch.Tensor"],
        reference_rejected_logps: Optional["torch.Tensor"],
chenych's avatar
chenych committed
159
160
    ) -> tuple["torch.Tensor", "torch.Tensor", "torch.Tensor"]:
        r"""Compute loss for preference learning."""
chenych's avatar
chenych committed
161
162
163
164
165
166
        if not self.finetuning_args.use_ref_model:
            if self.loss_type == "orpo":
                losses = self.odds_ratio_loss(policy_chosen_logps, policy_rejected_logps)
            elif self.loss_type == "simpo":
                losses = self.simpo_loss(policy_chosen_logps, policy_rejected_logps)
            else:
luopl's avatar
luopl committed
167
                raise NotImplementedError(f"Unknown loss type: {self.loss_type}.")
chenych's avatar
chenych committed
168
169
170
171
172
173
174
175
176
177

            chosen_rewards = self.beta * policy_chosen_logps.to(self.accelerator.device).detach()
            rejected_rewards = self.beta * policy_rejected_logps.to(self.accelerator.device).detach()
        else:
            losses, chosen_rewards, rejected_rewards = self.dpo_loss(
                policy_chosen_logps, policy_rejected_logps, reference_chosen_logps, reference_rejected_logps
            )

        return losses, chosen_rewards, rejected_rewards

luopl's avatar
luopl committed
178
    @override
chenych's avatar
chenych committed
179
    def concatenated_forward(
chenych's avatar
chenych committed
180
181
182
        self, model: "PreTrainedModel", batch: dict[str, "torch.Tensor"]
    ) -> tuple["torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor"]:
        r"""Compute the sum log probabilities of the labels under given logits if loss_type is not IPO, ORPO or SimPO.
chenych's avatar
chenych committed
183
184
185
186

        Otherwise the average log probabilities.
        """
        if self.finetuning_args.use_ref_model:
luopl's avatar
luopl committed
187
            batch = nested_detach(batch, clone=True)  # avoid error
chenych's avatar
chenych committed
188

chenych's avatar
chenych committed
189
        all_logits: torch.Tensor = model(**batch, return_dict=True, use_cache=False).logits.to(torch.float32)
chenych's avatar
chenych committed
190
191
192
193
194
195
196
197
        all_logps, valid_length = get_batch_logps(logits=all_logits, labels=batch["labels"])
        if self.loss_type in ["ipo", "orpo", "simpo"]:
            all_logps = all_logps / valid_length

        batch_size = batch["input_ids"].size(0) // 2
        chosen_logps, rejected_logps = all_logps.split(batch_size, dim=0)
        chosen_logits, rejected_logits = all_logits.split(batch_size, dim=0)
        chosen_length, _ = valid_length.split(batch_size, dim=0)
chenych's avatar
chenych committed
198
199
200
201
202

        if self.loss_type in ["ipo", "orpo", "simpo"]:
            return chosen_logps, rejected_logps, chosen_logits, rejected_logits, chosen_logps
        else:
            return chosen_logps, rejected_logps, chosen_logits, rejected_logits, chosen_logps / chosen_length
chenych's avatar
chenych committed
203

luopl's avatar
luopl committed
204
    @override
chenych's avatar
chenych committed
205
    def compute_reference_log_probs(
chenych's avatar
chenych committed
206
207
208
        self, model: "PreTrainedModel", batch: dict[str, "torch.Tensor"]
    ) -> tuple[Optional["torch.Tensor"], Optional["torch.Tensor"]]:
        r"""Compute log probabilities of the reference model."""
chenych's avatar
chenych committed
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
        if not self.finetuning_args.use_ref_model:
            return None, None

        if self.ref_model is None:
            ref_model = model
            ref_context = self.accelerator.unwrap_model(model).disable_adapter()
        else:
            ref_model = self.ref_model
            ref_context = nullcontext()

        with torch.no_grad(), ref_context:
            reference_chosen_logps, reference_rejected_logps, *_ = self.concatenated_forward(ref_model, batch)

        return reference_chosen_logps, reference_rejected_logps

luopl's avatar
luopl committed
224
    @override
chenych's avatar
chenych committed
225
226
227
    def get_batch_loss_metrics(
        self,
        model: "PreTrainedModel",
chenych's avatar
chenych committed
228
        batch: dict[str, "torch.Tensor"],
chenych's avatar
chenych committed
229
        train_eval: Literal["train", "eval"] = "train",
chenych's avatar
chenych committed
230
231
    ) -> tuple["torch.Tensor", dict[str, "torch.Tensor"]]:
        r"""Compute the DPO loss and other metrics for the given batch of inputs for train or test."""
chenych's avatar
chenych committed
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
        metrics = {}
        (
            policy_chosen_logps,
            policy_rejected_logps,
            policy_chosen_logits,
            policy_rejected_logits,
            policy_chosen_logps_avg,
        ) = self.concatenated_forward(model, batch)

        reference_chosen_logps, reference_rejected_logps = self.compute_reference_log_probs(model, batch)
        losses, chosen_rewards, rejected_rewards = self.compute_preference_loss(
            policy_chosen_logps,
            policy_rejected_logps,
            reference_chosen_logps,
            reference_rejected_logps,
        )
        sft_loss = -policy_chosen_logps_avg
        if self.ftx_gamma > 1e-6:
            losses += self.ftx_gamma * sft_loss

        prefix = "eval_" if train_eval == "eval" else ""
luopl's avatar
luopl committed
253
254
255
256
257
258
259
260
        metrics[f"{prefix}rewards/chosen"] = chosen_rewards.mean().item()
        metrics[f"{prefix}rewards/rejected"] = rejected_rewards.mean().item()
        metrics[f"{prefix}rewards/accuracies"] = (chosen_rewards > rejected_rewards).float().mean().item()
        metrics[f"{prefix}rewards/margins"] = (chosen_rewards - rejected_rewards).mean().item()
        metrics[f"{prefix}logps/chosen"] = policy_chosen_logps.mean().item()
        metrics[f"{prefix}logps/rejected"] = policy_rejected_logps.mean().item()
        metrics[f"{prefix}logits/chosen"] = policy_chosen_logits.mean().item()
        metrics[f"{prefix}logits/rejected"] = policy_rejected_logits.mean().item()
chenych's avatar
chenych committed
261
        if self.loss_type == "orpo":
luopl's avatar
luopl committed
262
263
            metrics[f"{prefix}sft_loss"] = sft_loss.mean().item()
            metrics[f"{prefix}odds_ratio_loss"] = ((losses - sft_loss) / self.beta).mean().item()
chenych's avatar
chenych committed
264
265

        return losses.mean(), metrics
luopl's avatar
luopl committed
266
267

    @override
luopl's avatar
luopl committed
268
    def compute_loss(
chenych's avatar
chenych committed
269
270
271
        self, model: "PreTrainedModel", inputs: dict[str, "torch.Tensor"], return_outputs: bool = False, **kwargs
    ) -> Union["torch.Tensor", tuple["torch.Tensor", list["torch.Tensor"]]]:
        r"""Subclass and override to accept extra kwargs."""
chenych's avatar
chenych committed
272
        return super().compute_loss(model, inputs, return_outputs)
luopl's avatar
luopl committed
273
274

    @override
chenych's avatar
chenych committed
275
276
    def log(self, logs: dict[str, float], *args, **kwargs) -> None:
        r"""Log `logs` on the various objects watching training, including stored metrics."""
luopl's avatar
luopl committed
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
        # logs either has "loss" or "eval_loss"
        train_eval = "train" if "loss" in logs else "eval"
        # Add averaged stored metrics to logs
        key_list, metric_list = [], []
        for key, metrics in self._stored_metrics[train_eval].items():
            key_list.append(key)
            metric_list.append(torch.tensor(metrics, dtype=torch.float).to(self.accelerator.device).mean().item())

        del self._stored_metrics[train_eval]
        if len(metric_list) < 10:  # pad to for all reduce
            for i in range(10 - len(metric_list)):
                key_list.append(f"dummy_{i}")
                metric_list.append(0.0)

        metric_list = torch.tensor(metric_list, dtype=torch.float).to(self.accelerator.device)
        metric_list = self.accelerator.reduce(metric_list, "mean").tolist()
        for key, metric in zip(key_list, metric_list):  # add remaining items
            if not key.startswith("dummy_"):
                logs[key] = metric

chenych's avatar
chenych committed
297
        return Trainer.log(self, logs, *args, **kwargs)