visual.py 9.69 KB
Newer Older
chenych's avatar
chenych committed
1
# Copyright 2025 HuggingFace Inc. and the LlamaFactory team.
chenych's avatar
chenych committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# This code is inspired by the HuggingFace's Transformers library.
# https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/models/llava/modeling_llava.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

luopl's avatar
luopl committed
18
from dataclasses import dataclass
chenych's avatar
chenych committed
19
from typing import TYPE_CHECKING, Optional
chenych's avatar
chenych committed
20
21

import torch
luopl's avatar
luopl committed
22
import transformers
chenych's avatar
chenych committed
23
24
25
import transformers.models
from transformers.activations import ACT2FN

luopl's avatar
luopl committed
26
from ...extras import logging
chenych's avatar
chenych committed
27
28
29


if TYPE_CHECKING:
chenych's avatar
chenych committed
30
    from transformers import LlavaConfig, PretrainedConfig, PreTrainedModel
chenych's avatar
chenych committed
31

luopl's avatar
luopl committed
32
    from ...hparams import FinetuningArguments, ModelArguments
chenych's avatar
chenych committed
33
34


luopl's avatar
luopl committed
35
36
logger = logging.get_logger(__name__)
transformers_logger = transformers.utils.logging.get_logger(__name__)
chenych's avatar
chenych committed
37
38


luopl's avatar
luopl committed
39
40
41
42
@dataclass
class CompositeModel:
    model_type: str
    projector_key: str
chenych's avatar
chenych committed
43
44
45
    vision_model_keys: list[str]
    language_model_keys: list[str]
    lora_conflict_keys: list[str]
luopl's avatar
luopl committed
46
47
48
49
50
51
52
53

    def get_projector(self, module: "torch.nn.Module") -> "torch.nn.Module":
        for key in self.projector_key.split("."):
            module = getattr(module, key)

        return module


chenych's avatar
chenych committed
54
COMPOSITE_MODELS: dict[str, "CompositeModel"] = {}
luopl's avatar
luopl committed
55
56
57
58
59


def _register_composite_model(
    model_type: str,
    projector_key: Optional[str] = None,
chenych's avatar
chenych committed
60
61
62
    vision_model_keys: Optional[list[str]] = None,
    language_model_keys: Optional[list[str]] = None,
    lora_conflict_keys: Optional[list[str]] = None,
luopl's avatar
luopl committed
63
):
chenych's avatar
chenych committed
64
65
66
67
68
69
70
71
72
73
    r"""Register a new composite model.

    Args:
        model_type: model type
        projector_key: multi_modal_projector
        vision_model_keys: vision_tower
        language_model_keys: language_model
        lora_conflict_keys: None

    """
luopl's avatar
luopl committed
74
75
    COMPOSITE_MODELS[model_type] = CompositeModel(
        model_type=model_type,
chenych's avatar
chenych committed
76
77
78
79
        projector_key=projector_key or "multi_modal_projector",
        vision_model_keys=vision_model_keys or ["vision_tower"],
        language_model_keys=language_model_keys or ["language_model"],
        lora_conflict_keys=lora_conflict_keys or [],
luopl's avatar
luopl committed
80
81
82
    )


chenych's avatar
chenych committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
class LlavaMultiModalProjectorForYiVL(torch.nn.Module):
    def __init__(self, config: "LlavaConfig") -> None:
        super().__init__()

        self.config = config
        if config is None:
            return

        self.linear_1 = torch.nn.Linear(config.vision_config.hidden_size, config.text_config.hidden_size, bias=True)
        self.linear_2 = torch.nn.LayerNorm(config.text_config.hidden_size, bias=True)
        self.linear_3 = torch.nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True)
        self.linear_4 = torch.nn.LayerNorm(config.text_config.hidden_size, bias=True)
        self.act = ACT2FN[config.projector_hidden_act]

    def forward(self, image_features: "torch.Tensor") -> "torch.Tensor":
        hidden_states = self.linear_1(image_features)
        hidden_states = self.linear_2(hidden_states)
        hidden_states = self.act(hidden_states)
        hidden_states = self.linear_3(hidden_states)
        hidden_states = self.linear_4(hidden_states)
        if hidden_states.dtype == torch.float32:
            if torch.is_autocast_enabled():
                target_dtype = torch.get_autocast_gpu_dtype()
            elif hasattr(self.config, "_pre_quantization_dtype"):
                target_dtype = self.config._pre_quantization_dtype
            else:
                target_dtype = self.linear_1.weight.dtype

            transformers_logger.warning_once("The hidden states seems to be silently casted in float32.")
            hidden_states = hidden_states.to(target_dtype)

        return hidden_states


class LlavaMultiModalProjectorForYiVLForVLLM(LlavaMultiModalProjectorForYiVL):
    def __init__(self, vision_hidden_size: int, text_hidden_size: int, projector_hidden_act: str) -> None:
        super().__init__(config=None)

        self.linear_1 = torch.nn.Linear(vision_hidden_size, text_hidden_size, bias=True)
        self.linear_2 = torch.nn.LayerNorm(text_hidden_size, bias=True)
        self.linear_3 = torch.nn.Linear(text_hidden_size, text_hidden_size, bias=True)
        self.linear_4 = torch.nn.LayerNorm(text_hidden_size, bias=True)
        self.act = ACT2FN[projector_hidden_act]


luopl's avatar
luopl committed
128
def autocast_projector_dtype(model: "PreTrainedModel", model_args: "ModelArguments") -> None:
chenych's avatar
chenych committed
129
    r"""Cast projector output to half precision for fine-tuning quantized VLMs."""
luopl's avatar
luopl committed
130

chenych's avatar
chenych committed
131
    def _mm_projector_forward_post_hook(
chenych's avatar
chenych committed
132
        module: "torch.nn.Module", args: tuple["torch.Tensor"], output: "torch.Tensor"
chenych's avatar
chenych committed
133
134
135
    ) -> "torch.Tensor":
        return output.to(model_args.compute_dtype)

luopl's avatar
luopl committed
136
137
    if getattr(model, "quantization_method", None):
        model_type = getattr(model.config, "model_type", None)
luopl's avatar
luopl committed
138
139
        if model_type in COMPOSITE_MODELS:
            mm_projector = COMPOSITE_MODELS[model_type].get_projector(model)
luopl's avatar
luopl committed
140
141
142
        else:
            return

luopl's avatar
luopl committed
143
        logger.info_rank0(f"Casting multimodal projector outputs in {model_args.compute_dtype}.")
chenych's avatar
chenych committed
144
145
146
147
        mm_projector.register_forward_hook(_mm_projector_forward_post_hook)


def configure_visual_model(config: "PretrainedConfig") -> None:
chenych's avatar
chenych committed
148
    r"""Patch VLMs before loading them."""
luopl's avatar
luopl committed
149
150
    if getattr(config, "text_config", None) and not getattr(config, "hidden_size", None):
        # required for ds zero3 and valuehead models
chenych's avatar
chenych committed
151
152
153
        setattr(config, "hidden_size", getattr(config.text_config, "hidden_size", None))

    if getattr(config, "is_yi_vl_derived_model", None):
luopl's avatar
luopl committed
154
        logger.info_rank0("Detected Yi-VL model, applying projector patch.")
chenych's avatar
chenych committed
155
        transformers.models.llava.modeling_llava.LlavaMultiModalProjector = LlavaMultiModalProjectorForYiVL
luopl's avatar
luopl committed
156
157


chenych's avatar
chenych committed
158
159
def get_forbidden_modules(config: "PretrainedConfig", finetuning_args: "FinetuningArguments") -> set[str]:
    r"""Freeze vision tower and language model for VLM full/freeze tuning."""
luopl's avatar
luopl committed
160
161
    model_type = getattr(config, "model_type", None)
    forbidden_modules = set()
luopl's avatar
luopl committed
162
    if model_type in COMPOSITE_MODELS:
luopl's avatar
luopl committed
163
        if finetuning_args.freeze_vision_tower:
luopl's avatar
luopl committed
164
165
166
            vision_model_keys = COMPOSITE_MODELS[model_type].vision_model_keys
            logger.info_rank0(f"Set vision model not trainable: {vision_model_keys}.")
            forbidden_modules.update(vision_model_keys)
luopl's avatar
luopl committed
167

luopl's avatar
luopl committed
168
169
170
171
        if finetuning_args.freeze_multi_modal_projector:
            projector_key = COMPOSITE_MODELS[model_type].projector_key
            logger.info_rank0(f"Set multi model projector not trainable: {projector_key}.")
            forbidden_modules.add(projector_key)
luopl's avatar
luopl committed
172

chenych's avatar
chenych committed
173
        if finetuning_args.freeze_language_model:
luopl's avatar
luopl committed
174
175
176
            language_model_keys = COMPOSITE_MODELS[model_type].language_model_keys
            logger.info_rank0(f"Set language model not trainable: {language_model_keys}.")
            forbidden_modules.update(language_model_keys)
luopl's avatar
luopl committed
177
178
179
180
181

    return forbidden_modules


def patch_target_modules(
chenych's avatar
chenych committed
182
183
184
    model: "PreTrainedModel", finetuning_args: "FinetuningArguments", target_modules: list[str]
) -> list[str]:
    r"""Freeze vision tower for VLM LoRA tuning."""
chenych's avatar
chenych committed
185
186
187
188
189
190
191
192
193
194
195
196
    model_type = getattr(model.config, "model_type", None)
    if model_type in COMPOSITE_MODELS:
        forbidden_modules = get_forbidden_modules(model.config, finetuning_args)
        forbidden_modules.update(COMPOSITE_MODELS[model_type].lora_conflict_keys)
        module_names = []
        for name, _ in model.named_modules():
            if any(target_module in name for target_module in target_modules) and not any(
                forbidden_module in name for forbidden_module in forbidden_modules
            ):
                module_names.append(name)

        return module_names
luopl's avatar
luopl committed
197
    else:
chenych's avatar
chenych committed
198
        return target_modules
luopl's avatar
luopl committed
199
200


chenych's avatar
chenych committed
201
202
203
204
205
206
207
208
209
210
211
_register_composite_model(
    model_type="gemma3",
)


_register_composite_model(
    model_type="llama4",
    vision_model_keys=["vision_model"],
)


luopl's avatar
luopl committed
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
_register_composite_model(
    model_type="llava",
)


_register_composite_model(
    model_type="llava_next",
)


_register_composite_model(
    model_type="llava_next_video",
)


_register_composite_model(
    model_type="minicpmv",
chenych's avatar
chenych committed
229
    projector_key="resampler",
luopl's avatar
luopl committed
230
231
232
233
234
235
236
    vision_model_keys=["vpm"],
    language_model_keys=["llm"],
)


_register_composite_model(
    model_type="minicpmo",
chenych's avatar
chenych committed
237
238
    projector_key="resampler",
    vision_model_keys=["vpm", "apm", "audio_avg_pooler", "audio_projection_layer", "tts"],
luopl's avatar
luopl committed
239
    language_model_keys=["llm"],
chenych's avatar
chenych committed
240
    lora_conflict_keys=["audio_projection_layer"],
luopl's avatar
luopl committed
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
)


_register_composite_model(
    model_type="paligemma",
)


_register_composite_model(
    model_type="video_llava",
)


_register_composite_model(
    model_type="mllama",
    vision_model_keys=["vision_model"],
)


chenych's avatar
chenych committed
260
261
262
263
264
265
_register_composite_model(
    model_type="qwen2_audio",
    vision_model_keys=["audio_tower"],
)


chenych's avatar
chenych committed
266
267
268
269
270
271
272
273
274
_register_composite_model(
    model_type="qwen2_5_omni_thinker",
    projector_key="visual.merger",
    vision_model_keys=["visual.patch_embed", "visual.blocks", "audio_tower"],
    language_model_keys=["model", "lm_head"],
    lora_conflict_keys=["patch_embed"],
)


luopl's avatar
luopl committed
275
276
277
278
279
_register_composite_model(
    model_type="qwen2_vl",
    projector_key="visual.merger",
    vision_model_keys=["visual.patch_embed", "visual.blocks"],
    language_model_keys=["model", "lm_head"],
chenych's avatar
chenych committed
280
281
282
283
284
285
286
287
288
289
    lora_conflict_keys=["patch_embed"],
)


_register_composite_model(
    model_type="qwen2_5_vl",
    projector_key="visual.merger",
    vision_model_keys=["visual.patch_embed", "visual.blocks"],
    language_model_keys=["model", "lm_head"],
    lora_conflict_keys=["patch_embed"],
luopl's avatar
luopl committed
290
)