"examples/pytorch/rrn/sudoku_solver.py" did not exist on "e1f08644fb89023349f9d307aea9324f5353aa42"
valuehead.py 2.69 KB
Newer Older
chenych's avatar
chenych committed
1
# Copyright 2025 the LlamaFactory team.
chenych's avatar
chenych committed
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

chenych's avatar
chenych committed
15
from typing import TYPE_CHECKING
chenych's avatar
chenych committed
16
17
18
19

import torch
from transformers.utils import cached_file

luopl's avatar
luopl committed
20
from ...extras import logging
chenych's avatar
chenych committed
21
22
23
24
25
26
27
28
29
from ...extras.constants import V_HEAD_SAFE_WEIGHTS_NAME, V_HEAD_WEIGHTS_NAME


if TYPE_CHECKING:
    from transformers import PreTrainedModel

    from ...hparams import ModelArguments


luopl's avatar
luopl committed
30
logger = logging.get_logger(__name__)
chenych's avatar
chenych committed
31
32


chenych's avatar
chenych committed
33
34
def load_valuehead_params(path_or_repo_id: str, model_args: "ModelArguments") -> dict[str, torch.Tensor]:
    r"""Load value head parameters from Hugging Face Hub or local disk.
chenych's avatar
chenych committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

    Returns: dict with keys `v_head.summary.weight` and `v_head.summary.bias`.
    """
    kwargs = {"path_or_repo_id": path_or_repo_id, "cache_dir": model_args.cache_dir, "token": model_args.hf_hub_token}
    err_text = ""

    try:
        from safetensors import safe_open

        vhead_file = cached_file(filename=V_HEAD_SAFE_WEIGHTS_NAME, **kwargs)
        with safe_open(vhead_file, framework="pt", device="cpu") as f:
            return {key: f.get_tensor(key) for key in f.keys()}
    except Exception as err:
        err_text = str(err)

    try:
        vhead_file = cached_file(filename=V_HEAD_WEIGHTS_NAME, **kwargs)
        return torch.load(vhead_file, map_location="cpu")
    except Exception as err:
        err_text = str(err)

luopl's avatar
luopl committed
56
57
    logger.info_rank0(f"Provided path ({path_or_repo_id}) does not contain value head weights: {err_text}.")
    logger.info_rank0("Ignore the above message if you are not resuming the training of a value head model.")
chenych's avatar
chenych committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
    return None


def prepare_valuehead_model(model: "PreTrainedModel") -> None:
    if getattr(model.config, "model_type", None) == "llava":
        setattr(model, "lm_head", model.language_model.get_output_embeddings())
        setattr(model, "_keys_to_ignore_on_save", ["lm_head.weight"])

    if getattr(model.config, "model_type", None) == "chatglm":
        setattr(model, "lm_head", model.transformer.output_layer)
        setattr(model, "_keys_to_ignore_on_save", ["lm_head.weight"])

    if getattr(model.config, "model_type", None) == "internlm2":
        setattr(model, "lm_head", model.output)
        setattr(model, "_keys_to_ignore_on_save", ["lm_head.weight"])