quantization.py 8.82 KB
Newer Older
chenych's avatar
chenych committed
1
# Copyright 2025 HuggingFace Inc. and the LlamaFactory team.
chenych's avatar
chenych committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#
# This code is inspired by the HuggingFace's Transformers and Optimum library.
# https://github.com/huggingface/transformers/blob/v4.41.0/src/transformers/utils/quantization_config.py
# https://github.com/huggingface/optimum/blob/v1.20.0/optimum/gptq/data.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import random
from enum import Enum, unique
chenych's avatar
chenych committed
22
from typing import TYPE_CHECKING, Any
chenych's avatar
chenych committed
23
24
25
26
27
28
29

import torch
from datasets import load_dataset
from transformers import BitsAndBytesConfig, EetqConfig, GPTQConfig, HqqConfig
from transformers.integrations import is_deepspeed_zero3_enabled
from transformers.modeling_utils import is_fsdp_enabled

luopl's avatar
luopl committed
30
from ...extras import logging
chenych's avatar
chenych committed
31
from ...extras.constants import FILEEXT2TYPE
luopl's avatar
luopl committed
32
from ...extras.misc import check_version, get_current_device
chenych's avatar
chenych committed
33
34
35
36
37
38
39
40


if TYPE_CHECKING:
    from transformers import PretrainedConfig, PreTrainedTokenizer

    from ...hparams import ModelArguments


luopl's avatar
luopl committed
41
logger = logging.get_logger(__name__)
chenych's avatar
chenych committed
42
43
44
45


@unique
class QuantizationMethod(str, Enum):
chenych's avatar
chenych committed
46
    r"""Borrowed from `transformers.utils.quantization_config.QuantizationMethod`."""
chenych's avatar
chenych committed
47
48
49
50
51
52
53
54
55
56

    BITS_AND_BYTES = "bitsandbytes"
    GPTQ = "gptq"
    AWQ = "awq"
    AQLM = "aqlm"
    QUANTO = "quanto"
    EETQ = "eetq"
    HQQ = "hqq"


chenych's avatar
chenych committed
57
58
def _get_quantization_dataset(tokenizer: "PreTrainedTokenizer", model_args: "ModelArguments") -> list[dict[str, Any]]:
    r"""Prepare the tokenized dataset to perform AutoGPTQ. Do not use tensor output for JSON serialization."""
chenych's avatar
chenych committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
    if os.path.isfile(model_args.export_quantization_dataset):
        data_path = FILEEXT2TYPE.get(model_args.export_quantization_dataset.split(".")[-1], None)
        data_files = model_args.export_quantization_dataset
    else:
        data_path = model_args.export_quantization_dataset
        data_files = None

    dataset = load_dataset(
        path=data_path,
        data_files=data_files,
        split="train",
        cache_dir=model_args.cache_dir,
        token=model_args.hf_hub_token,
    )

    samples = []
    maxlen = model_args.export_quantization_maxlen
    for _ in range(model_args.export_quantization_nsamples):
        n_try = 0
        while True:
            if n_try > 100:
                raise ValueError("Cannot find satisfying example, considering decrease `export_quantization_maxlen`.")

            sample_idx = random.randint(0, len(dataset) - 1)
chenych's avatar
chenych committed
83
            sample: dict[str, torch.Tensor] = tokenizer(dataset[sample_idx]["text"], return_tensors="pt")
chenych's avatar
chenych committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
            n_try += 1
            if sample["input_ids"].size(1) > maxlen:
                break  # TODO: fix large maxlen

        word_idx = random.randint(0, sample["input_ids"].size(1) - maxlen - 1)
        input_ids = sample["input_ids"][:, word_idx : word_idx + maxlen]
        attention_mask = sample["attention_mask"][:, word_idx : word_idx + maxlen]
        samples.append({"input_ids": input_ids.tolist(), "attention_mask": attention_mask.tolist()})

    return samples


def configure_quantization(
    config: "PretrainedConfig",
    tokenizer: "PreTrainedTokenizer",
    model_args: "ModelArguments",
chenych's avatar
chenych committed
100
    init_kwargs: dict[str, Any],
chenych's avatar
chenych committed
101
) -> None:
chenych's avatar
chenych committed
102
    r"""Priority: PTQ-quantized (train/infer) > AutoGPTQ (export) > On-the-fly quantization (train/infer)."""
chenych's avatar
chenych committed
103
104
    if getattr(config, "quantization_config", None):  # ptq
        if model_args.quantization_bit is not None:
luopl's avatar
luopl committed
105
            logger.warning_rank0("`quantization_bit` will not affect on the PTQ-quantized models.")
chenych's avatar
chenych committed
106
107
108
109

        if is_deepspeed_zero3_enabled() or is_fsdp_enabled():
            raise ValueError("DeepSpeed ZeRO-3 or FSDP is incompatible with PTQ-quantized models.")

chenych's avatar
chenych committed
110
        quantization_config: dict[str, Any] = getattr(config, "quantization_config", None)
chenych's avatar
chenych committed
111
112
113
        quant_method = quantization_config.get("quant_method", "")

        if quant_method == QuantizationMethod.GPTQ:
luopl's avatar
luopl committed
114
            check_version("auto_gptq>=0.5.0", mandatory=True)
chenych's avatar
chenych committed
115
116
117
118
            quantization_config.pop("disable_exllama", None)  # remove deprecated args
            quantization_config["use_exllama"] = False  # disable exllama

        if quant_method == QuantizationMethod.AWQ:
luopl's avatar
luopl committed
119
            check_version("autoawq", mandatory=True)
chenych's avatar
chenych committed
120
121

        if quant_method == QuantizationMethod.AQLM:
luopl's avatar
luopl committed
122
            check_version("aqlm>=1.1.0", mandatory=True)
chenych's avatar
chenych committed
123
124
125
            quantization_config["bits"] = 2

        quant_bits = quantization_config.get("bits", "?")
luopl's avatar
luopl committed
126
        logger.info_rank0(f"Loading {quant_bits}-bit {quant_method.upper()}-quantized model.")
chenych's avatar
chenych committed
127
128
129
130
131

    elif model_args.export_quantization_bit is not None:  # auto-gptq
        if model_args.export_quantization_bit not in [8, 4, 3, 2]:
            raise ValueError("AutoGPTQ only accepts 2/3/4/8-bit quantization.")

luopl's avatar
luopl committed
132
133
        check_version("optimum>=1.17.0", mandatory=True)
        check_version("auto_gptq>=0.5.0", mandatory=True)
chenych's avatar
chenych committed
134
135
136
137
138
139
140
141
142
143
144
        from accelerate.utils import get_max_memory

        if getattr(config, "model_type", None) == "chatglm":
            raise ValueError("ChatGLM model is not supported yet.")

        init_kwargs["quantization_config"] = GPTQConfig(
            bits=model_args.export_quantization_bit,
            dataset=_get_quantization_dataset(tokenizer, model_args),
        )
        init_kwargs["device_map"] = "auto"
        init_kwargs["max_memory"] = get_max_memory()
luopl's avatar
luopl committed
145
        logger.info_rank0(f"Quantizing model to {model_args.export_quantization_bit} bit with AutoGPTQ.")
chenych's avatar
chenych committed
146
147
148
149

    elif model_args.quantization_bit is not None:  # on-the-fly
        if model_args.quantization_method == QuantizationMethod.BITS_AND_BYTES.value:
            if model_args.quantization_bit == 8:
luopl's avatar
luopl committed
150
                check_version("bitsandbytes>=0.37.0", mandatory=True)
chenych's avatar
chenych committed
151
152
                init_kwargs["quantization_config"] = BitsAndBytesConfig(load_in_8bit=True)
            elif model_args.quantization_bit == 4:
luopl's avatar
luopl committed
153
                check_version("bitsandbytes>=0.39.0", mandatory=True)
chenych's avatar
chenych committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
                init_kwargs["quantization_config"] = BitsAndBytesConfig(
                    load_in_4bit=True,
                    bnb_4bit_compute_dtype=model_args.compute_dtype,
                    bnb_4bit_use_double_quant=model_args.double_quantization,
                    bnb_4bit_quant_type=model_args.quantization_type,
                    bnb_4bit_quant_storage=model_args.compute_dtype,  # crucial for fsdp+qlora
                )
            else:
                raise ValueError("Bitsandbytes only accepts 4-bit or 8-bit quantization.")

            # Do not assign device map if:
            # 1. deepspeed zero3 or fsdp (train)
            # 2. auto quantization device map (inference)
            if is_deepspeed_zero3_enabled() or is_fsdp_enabled() or model_args.quantization_device_map == "auto":
                if model_args.quantization_bit != 4:
                    raise ValueError("Only 4-bit quantized model can use fsdp+qlora or auto device map.")

luopl's avatar
luopl committed
171
                check_version("bitsandbytes>=0.43.0", mandatory=True)
chenych's avatar
chenych committed
172
173
174
            else:
                init_kwargs["device_map"] = {"": get_current_device()}  # change auto device map for inference

luopl's avatar
luopl committed
175
            logger.info_rank0(f"Quantizing model to {model_args.quantization_bit} bit with bitsandbytes.")
chenych's avatar
chenych committed
176
177
178
179
180
181
182
        elif model_args.quantization_method == QuantizationMethod.HQQ.value:
            if model_args.quantization_bit not in [8, 6, 5, 4, 3, 2, 1]:
                raise ValueError("HQQ only accepts 1/2/3/4/5/6/8-bit quantization.")

            if is_deepspeed_zero3_enabled() or is_fsdp_enabled():
                raise ValueError("HQQ quantization is incompatible with DeepSpeed ZeRO-3 or FSDP.")

luopl's avatar
luopl committed
183
            check_version("hqq", mandatory=True)
chenych's avatar
chenych committed
184
185
186
            init_kwargs["quantization_config"] = HqqConfig(
                nbits=model_args.quantization_bit, quant_zero=False, quant_scale=False, axis=0
            )  # use ATEN kernel (axis=0) for performance
luopl's avatar
luopl committed
187
            logger.info_rank0(f"Quantizing model to {model_args.quantization_bit} bit with HQQ.")
chenych's avatar
chenych committed
188
189
190
191
192
193
194
        elif model_args.quantization_method == QuantizationMethod.EETQ.value:
            if model_args.quantization_bit != 8:
                raise ValueError("EETQ only accepts 8-bit quantization.")

            if is_deepspeed_zero3_enabled() or is_fsdp_enabled():
                raise ValueError("EETQ quantization is incompatible with DeepSpeed ZeRO-3 or FSDP.")

luopl's avatar
luopl committed
195
            check_version("eetq", mandatory=True)
chenych's avatar
chenych committed
196
            init_kwargs["quantization_config"] = EetqConfig()
luopl's avatar
luopl committed
197
            logger.info_rank0(f"Quantizing model to {model_args.quantization_bit} bit with EETQ.")