"vscode:/vscode.git/clone" did not exist on "b632c3a72b4209edd592405a42b2d344804340a1"
loader.py 7.94 KB
Newer Older
chenych's avatar
chenych committed
1
# Copyright 2025 the LlamaFactory team.
chenych's avatar
chenych committed
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

luopl's avatar
luopl committed
15
import os
chenych's avatar
chenych committed
16
from typing import TYPE_CHECKING, Any, Optional, TypedDict
chenych's avatar
chenych committed
17
18

import torch
chenych's avatar
chenych committed
19
20
21
from transformers import (
    AutoConfig,
    AutoModelForCausalLM,
chenych's avatar
chenych committed
22
    AutoModelForImageTextToText,
chenych's avatar
chenych committed
23
    AutoModelForSeq2SeqLM,
chenych's avatar
chenych committed
24
    AutoModelForTextToWaveform,
chenych's avatar
chenych committed
25
26
27
28
    AutoModelForVision2Seq,
    AutoProcessor,
    AutoTokenizer,
)
chenych's avatar
chenych committed
29
30
from trl import AutoModelForCausalLMWithValueHead

luopl's avatar
luopl committed
31
32
from ..extras import logging
from ..extras.misc import count_parameters, skip_check_imports, try_download_model_from_other_hub
chenych's avatar
chenych committed
33
from .adapter import init_adapter
luopl's avatar
luopl committed
34
from .model_utils.liger_kernel import apply_liger_kernel
chenych's avatar
chenych committed
35
36
37
38
from .model_utils.misc import register_autoclass
from .model_utils.mod import convert_pretrained_model_to_mod, load_mod_pretrained_model
from .model_utils.unsloth import load_unsloth_pretrained_model
from .model_utils.valuehead import load_valuehead_params
luopl's avatar
luopl committed
39
from .patcher import patch_config, patch_model, patch_processor, patch_tokenizer, patch_valuehead_model
chenych's avatar
chenych committed
40
41
42
43
44
45
46
47


if TYPE_CHECKING:
    from transformers import PretrainedConfig, PreTrainedModel, PreTrainedTokenizer, ProcessorMixin

    from ..hparams import FinetuningArguments, ModelArguments


luopl's avatar
luopl committed
48
logger = logging.get_logger(__name__)
chenych's avatar
chenych committed
49
50
51
52
53
54
55


class TokenizerModule(TypedDict):
    tokenizer: "PreTrainedTokenizer"
    processor: Optional["ProcessorMixin"]


chenych's avatar
chenych committed
56
57
def _get_init_kwargs(model_args: "ModelArguments") -> dict[str, Any]:
    r"""Get arguments to load config/tokenizer/model.
chenych's avatar
chenych committed
58
59
60
61

    Note: including inplace operation of model_args.
    """
    skip_check_imports()
luopl's avatar
luopl committed
62
    model_args.model_name_or_path = try_download_model_from_other_hub(model_args)
chenych's avatar
chenych committed
63
    return {
luopl's avatar
luopl committed
64
        "trust_remote_code": model_args.trust_remote_code,
chenych's avatar
chenych committed
65
66
67
68
69
70
71
        "cache_dir": model_args.cache_dir,
        "revision": model_args.model_revision,
        "token": model_args.hf_hub_token,
    }


def load_tokenizer(model_args: "ModelArguments") -> "TokenizerModule":
chenych's avatar
chenych committed
72
    r"""Load pretrained tokenizer and optionally loads processor.
chenych's avatar
chenych committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

    Note: including inplace operation of model_args.
    """
    init_kwargs = _get_init_kwargs(model_args)
    try:
        tokenizer = AutoTokenizer.from_pretrained(
            model_args.model_name_or_path,
            use_fast=model_args.use_fast_tokenizer,
            split_special_tokens=model_args.split_special_tokens,
            padding_side="right",
            **init_kwargs,
        )
    except ValueError:  # try the fast one
        tokenizer = AutoTokenizer.from_pretrained(
            model_args.model_name_or_path,
            use_fast=True,
            padding_side="right",
            **init_kwargs,
        )
luopl's avatar
luopl committed
92
93
    except Exception as e:
        raise OSError("Failed to load tokenizer.") from e
chenych's avatar
chenych committed
94

chenych's avatar
chenych committed
95
    patch_tokenizer(tokenizer, model_args)
luopl's avatar
luopl committed
96
97
    try:
        processor = AutoProcessor.from_pretrained(model_args.model_name_or_path, **init_kwargs)
chenych's avatar
chenych committed
98
        patch_processor(processor, tokenizer, model_args)
luopl's avatar
luopl committed
99
    except Exception as e:
luopl's avatar
luopl committed
100
        logger.debug(f"Processor was not found: {e}.")
luopl's avatar
luopl committed
101
        processor = None
chenych's avatar
chenych committed
102

luopl's avatar
luopl committed
103
104
105
    # Avoid load tokenizer, see:
    # https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/models/auto/processing_auto.py#L324
    if processor is not None and "Processor" not in processor.__class__.__name__:
chenych's avatar
chenych committed
106
107
108
109
110
111
        processor = None

    return {"tokenizer": tokenizer, "processor": processor}


def load_config(model_args: "ModelArguments") -> "PretrainedConfig":
chenych's avatar
chenych committed
112
    r"""Load model config."""
chenych's avatar
chenych committed
113
114
115
116
117
118
119
120
121
122
123
    init_kwargs = _get_init_kwargs(model_args)
    return AutoConfig.from_pretrained(model_args.model_name_or_path, **init_kwargs)


def load_model(
    tokenizer: "PreTrainedTokenizer",
    model_args: "ModelArguments",
    finetuning_args: "FinetuningArguments",
    is_trainable: bool = False,
    add_valuehead: bool = False,
) -> "PreTrainedModel":
chenych's avatar
chenych committed
124
    r"""Load pretrained model."""
chenych's avatar
chenych committed
125
126
127
    init_kwargs = _get_init_kwargs(model_args)
    config = load_config(model_args)
    patch_config(config, tokenizer, model_args, init_kwargs, is_trainable)
luopl's avatar
luopl committed
128
    apply_liger_kernel(config, model_args, is_trainable, require_logits=(finetuning_args.stage not in ["pt", "sft"]))
chenych's avatar
chenych committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

    model = None
    lazy_load = False
    if model_args.use_unsloth:
        if model_args.adapter_name_or_path is not None:
            lazy_load = True
        elif is_trainable:
            model = load_unsloth_pretrained_model(config, model_args)

    if model is None and not lazy_load:
        init_kwargs["config"] = config
        init_kwargs["pretrained_model_name_or_path"] = model_args.model_name_or_path

        if model_args.mixture_of_depths == "load":
            model = load_mod_pretrained_model(**init_kwargs)
        else:
chenych's avatar
chenych committed
145
            if type(config) in AutoModelForVision2Seq._model_mapping.keys():  # image-text
luopl's avatar
luopl committed
146
                load_class = AutoModelForVision2Seq
chenych's avatar
chenych committed
147
148
149
            elif type(config) in AutoModelForImageTextToText._model_mapping.keys():  # image-text
                load_class = AutoModelForImageTextToText
            elif type(config) in AutoModelForSeq2SeqLM._model_mapping.keys():  # audio-text
chenych's avatar
chenych committed
150
                load_class = AutoModelForSeq2SeqLM
chenych's avatar
chenych committed
151
152
            elif type(config) in AutoModelForTextToWaveform._model_mapping.keys():  # audio hack for qwen2_5_omni
                load_class = AutoModelForTextToWaveform
luopl's avatar
luopl committed
153
154
            else:
                load_class = AutoModelForCausalLM
luopl's avatar
luopl committed
155

luopl's avatar
luopl committed
156
            if model_args.train_from_scratch:
luopl's avatar
luopl committed
157
                model = load_class.from_config(config, trust_remote_code=model_args.trust_remote_code)
luopl's avatar
luopl committed
158
159
            else:
                model = load_class.from_pretrained(**init_kwargs)
chenych's avatar
chenych committed
160
161
                if getattr(model.config, "model_type", None) == "qwen2_5_omni":
                    model = model.thinker  # use part of Omni model
chenych's avatar
chenych committed
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

        if model_args.mixture_of_depths == "convert":
            model = convert_pretrained_model_to_mod(model, config, model_args)

    if not lazy_load:
        patch_model(model, tokenizer, model_args, is_trainable, add_valuehead)
        register_autoclass(config, model, tokenizer)

    model = init_adapter(config, model, model_args, finetuning_args, is_trainable)

    if add_valuehead:
        model = AutoModelForCausalLMWithValueHead.from_pretrained(model)
        patch_valuehead_model(model)

        if model_args.adapter_name_or_path is not None:
            vhead_path = model_args.adapter_name_or_path[-1]
        else:
            vhead_path = model_args.model_name_or_path

        vhead_params = load_valuehead_params(vhead_path, model_args)
        if vhead_params is not None:
            model.load_state_dict(vhead_params, strict=False)
luopl's avatar
luopl committed
184
            logger.info_rank0(f"Loaded valuehead from checkpoint: {vhead_path}")
chenych's avatar
chenych committed
185
186
187
188
189
190
191
192
193
194
195
196
197

    if not is_trainable:
        model.requires_grad_(False)
        for param in model.parameters():
            if param.data.dtype == torch.float32 and model_args.compute_dtype != torch.float32:
                param.data = param.data.to(model_args.compute_dtype)

        model.eval()
    else:
        model.train()

    trainable_params, all_param = count_parameters(model)
    if is_trainable:
chenych's avatar
chenych committed
198
199
200
        param_stats = (
            f"trainable params: {trainable_params:,} || "
            f"all params: {all_param:,} || trainable%: {100 * trainable_params / all_param:.4f}"
chenych's avatar
chenych committed
201
202
        )
    else:
luopl's avatar
luopl committed
203
        param_stats = f"all params: {all_param:,}"
chenych's avatar
chenych committed
204

luopl's avatar
luopl committed
205
    logger.info_rank0(param_stats)
chenych's avatar
chenych committed
206

luopl's avatar
luopl committed
207
    if model_args.print_param_status and int(os.getenv("LOCAL_RANK", "0")) == 0:
chenych's avatar
chenych committed
208
        for name, param in model.named_parameters():
luopl's avatar
luopl committed
209
            print(f"name: {name}, dtype: {param.dtype}, device: {param.device}, trainable: {param.requires_grad}")
chenych's avatar
chenych committed
210
211

    return model