parser.py 19 KB
Newer Older
chenych's avatar
chenych committed
1
# Copyright 2025 HuggingFace Inc. and the LlamaFactory team.
chenych's avatar
chenych committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# This code is inspired by the HuggingFace's transformers library.
# https://github.com/huggingface/transformers/blob/v4.40.0/examples/pytorch/language-modeling/run_clm.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

luopl's avatar
luopl committed
18
import json
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
19
20
import os
import sys
luopl's avatar
luopl committed
21
from pathlib import Path
chenych's avatar
chenych committed
22
from typing import Any, Optional, Union
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
23
24
25

import torch
import transformers
luopl's avatar
luopl committed
26
27
import yaml
from transformers import HfArgumentParser
chenych's avatar
chenych committed
28
from transformers.integrations import is_deepspeed_zero3_enabled
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
29
from transformers.trainer_utils import get_last_checkpoint
chenych's avatar
chenych committed
30
from transformers.training_args import ParallelMode
luopl's avatar
luopl committed
31
from transformers.utils import is_torch_bf16_gpu_available, is_torch_npu_available
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
32

luopl's avatar
luopl committed
33
from ..extras import logging
chenych's avatar
chenych committed
34
from ..extras.constants import CHECKPOINT_NAMES, EngineName
chenych's avatar
chenych committed
35
from ..extras.misc import check_dependencies, check_version, get_current_device, is_env_enabled
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
36
37
38
39
40
from .data_args import DataArguments
from .evaluation_args import EvaluationArguments
from .finetuning_args import FinetuningArguments
from .generating_args import GeneratingArguments
from .model_args import ModelArguments
luopl's avatar
luopl committed
41
from .training_args import RayArguments, TrainingArguments
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
42
43


luopl's avatar
luopl committed
44
logger = logging.get_logger(__name__)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
45
46
47
48

check_dependencies()


luopl's avatar
luopl committed
49
_TRAIN_ARGS = [ModelArguments, DataArguments, TrainingArguments, FinetuningArguments, GeneratingArguments]
chenych's avatar
chenych committed
50
_TRAIN_CLS = tuple[ModelArguments, DataArguments, TrainingArguments, FinetuningArguments, GeneratingArguments]
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
51
_INFER_ARGS = [ModelArguments, DataArguments, FinetuningArguments, GeneratingArguments]
chenych's avatar
chenych committed
52
_INFER_CLS = tuple[ModelArguments, DataArguments, FinetuningArguments, GeneratingArguments]
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
53
_EVAL_ARGS = [ModelArguments, DataArguments, EvaluationArguments, FinetuningArguments]
chenych's avatar
chenych committed
54
_EVAL_CLS = tuple[ModelArguments, DataArguments, EvaluationArguments, FinetuningArguments]
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
55
56


chenych's avatar
chenych committed
57
58
def read_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> Union[dict[str, Any], list[str]]:
    r"""Get arguments from the command line or a config file."""
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
59
    if args is not None:
luopl's avatar
luopl committed
60
        return args
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
61

luopl's avatar
luopl committed
62
    if len(sys.argv) == 2 and (sys.argv[1].endswith(".yaml") or sys.argv[1].endswith(".yml")):
luopl's avatar
luopl committed
63
64
65
66
67
        return yaml.safe_load(Path(sys.argv[1]).absolute().read_text())
    elif len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        return json.loads(Path(sys.argv[1]).absolute().read_text())
    else:
        return sys.argv[1:]
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
68
69


luopl's avatar
luopl committed
70
def _parse_args(
chenych's avatar
chenych committed
71
72
    parser: "HfArgumentParser", args: Optional[Union[dict[str, Any], list[str]]] = None, allow_extra_keys: bool = False
) -> tuple[Any]:
luopl's avatar
luopl committed
73
74
75
    args = read_args(args)
    if isinstance(args, dict):
        return parser.parse_dict(args, allow_extra_keys=allow_extra_keys)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
76

luopl's avatar
luopl committed
77
78
79
    (*parsed_args, unknown_args) = parser.parse_args_into_dataclasses(args=args, return_remaining_strings=True)

    if unknown_args and not allow_extra_keys:
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
80
        print(parser.format_help())
luopl's avatar
luopl committed
81
82
        print(f"Got unknown args, potentially deprecated arguments: {unknown_args}")
        raise ValueError(f"Some specified arguments are not used by the HfArgumentParser: {unknown_args}")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
83

chenych's avatar
chenych committed
84
    return tuple(parsed_args)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
85
86


luopl's avatar
luopl committed
87
def _set_transformers_logging() -> None:
chenych's avatar
chenych committed
88
89
90
91
    if os.getenv("LLAMAFACTORY_VERBOSITY", "INFO") in ["DEBUG", "INFO"]:
        transformers.utils.logging.set_verbosity_info()
        transformers.utils.logging.enable_default_handler()
        transformers.utils.logging.enable_explicit_format()
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
92
93


chenych's avatar
chenych committed
94
95
96
97
98
def _verify_model_args(
    model_args: "ModelArguments",
    data_args: "DataArguments",
    finetuning_args: "FinetuningArguments",
) -> None:
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
99
100
101
102
103
104
105
    if model_args.adapter_name_or_path is not None and finetuning_args.finetuning_type != "lora":
        raise ValueError("Adapter is only valid for the LoRA method.")

    if model_args.quantization_bit is not None:
        if finetuning_args.finetuning_type != "lora":
            raise ValueError("Quantization is only compatible with the LoRA method.")

chenych's avatar
chenych committed
106
107
108
109
110
111
        if finetuning_args.pissa_init:
            raise ValueError("Please use scripts/pissa_init.py to initialize PiSSA for a quantized model.")

        if model_args.resize_vocab:
            raise ValueError("Cannot resize embedding layers of a quantized model.")

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
112
113
114
115
116
117
        if model_args.adapter_name_or_path is not None and finetuning_args.create_new_adapter:
            raise ValueError("Cannot create new adapter upon a quantized model.")

        if model_args.adapter_name_or_path is not None and len(model_args.adapter_name_or_path) != 1:
            raise ValueError("Quantized model only accepts a single adapter. Merge them first.")

chenych's avatar
chenych committed
118
    if data_args.template == "yi" and model_args.use_fast_tokenizer:
luopl's avatar
luopl committed
119
        logger.warning_rank0("We should use slow tokenizer for the Yi models. Change `use_fast_tokenizer` to False.")
chenych's avatar
chenych committed
120
121
        model_args.use_fast_tokenizer = False

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
122
123
124
125

def _check_extra_dependencies(
    model_args: "ModelArguments",
    finetuning_args: "FinetuningArguments",
luopl's avatar
luopl committed
126
    training_args: Optional["TrainingArguments"] = None,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
127
128
) -> None:
    if model_args.use_unsloth:
luopl's avatar
luopl committed
129
        check_version("unsloth", mandatory=True)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
130

luopl's avatar
luopl committed
131
    if model_args.enable_liger_kernel:
luopl's avatar
luopl committed
132
        check_version("liger-kernel", mandatory=True)
luopl's avatar
luopl committed
133

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
134
    if model_args.mixture_of_depths is not None:
luopl's avatar
luopl committed
135
        check_version("mixture-of-depth>=1.1.6", mandatory=True)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
136

chenych's avatar
chenych committed
137
138
    if model_args.infer_backend == EngineName.VLLM:
        check_version("vllm>=0.4.3,<=0.8.2")
luopl's avatar
luopl committed
139
        check_version("vllm", mandatory=True)
chenych's avatar
chenych committed
140
141
142
    elif model_args.infer_backend == EngineName.SGLANG:
        check_version("sglang>=0.4.4")
        check_version("sglang", mandatory=True)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
143
144

    if finetuning_args.use_galore:
luopl's avatar
luopl committed
145
146
147
148
        check_version("galore_torch", mandatory=True)

    if finetuning_args.use_apollo:
        check_version("apollo_torch", mandatory=True)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
149
150

    if finetuning_args.use_badam:
luopl's avatar
luopl committed
151
        check_version("badam>=1.2.1", mandatory=True)
chenych's avatar
chenych committed
152
153

    if finetuning_args.use_adam_mini:
luopl's avatar
luopl committed
154
        check_version("adam-mini", mandatory=True)
chenych's avatar
chenych committed
155
156

    if finetuning_args.plot_loss:
luopl's avatar
luopl committed
157
        check_version("matplotlib", mandatory=True)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
158
159

    if training_args is not None and training_args.predict_with_generate:
luopl's avatar
luopl committed
160
161
162
        check_version("jieba", mandatory=True)
        check_version("nltk", mandatory=True)
        check_version("rouge_chinese", mandatory=True)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
163
164


chenych's avatar
chenych committed
165
def _parse_train_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> _TRAIN_CLS:
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
166
    parser = HfArgumentParser(_TRAIN_ARGS)
chenych's avatar
chenych committed
167
168
    allow_extra_keys = is_env_enabled("ALLOW_EXTRA_ARGS")
    return _parse_args(parser, args, allow_extra_keys=allow_extra_keys)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
169
170


chenych's avatar
chenych committed
171
def _parse_infer_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> _INFER_CLS:
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
172
    parser = HfArgumentParser(_INFER_ARGS)
chenych's avatar
chenych committed
173
174
    allow_extra_keys = is_env_enabled("ALLOW_EXTRA_ARGS")
    return _parse_args(parser, args, allow_extra_keys=allow_extra_keys)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
175
176


chenych's avatar
chenych committed
177
def _parse_eval_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> _EVAL_CLS:
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
178
    parser = HfArgumentParser(_EVAL_ARGS)
chenych's avatar
chenych committed
179
180
    allow_extra_keys = is_env_enabled("ALLOW_EXTRA_ARGS")
    return _parse_args(parser, args, allow_extra_keys=allow_extra_keys)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
181
182


chenych's avatar
chenych committed
183
def get_ray_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> RayArguments:
luopl's avatar
luopl committed
184
185
186
187
188
    parser = HfArgumentParser(RayArguments)
    (ray_args,) = _parse_args(parser, args, allow_extra_keys=True)
    return ray_args


chenych's avatar
chenych committed
189
def get_train_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> _TRAIN_CLS:
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
190
191
192
193
194
195
196
    model_args, data_args, training_args, finetuning_args, generating_args = _parse_train_args(args)

    # Setup logging
    if training_args.should_log:
        _set_transformers_logging()

    # Check arguments
chenych's avatar
chenych committed
197
198
199
200
201
202
203
204
205
    if finetuning_args.stage != "sft":
        if training_args.predict_with_generate:
            raise ValueError("`predict_with_generate` cannot be set as True except SFT.")

        if data_args.neat_packing:
            raise ValueError("`neat_packing` cannot be set as True except SFT.")

        if data_args.train_on_prompt or data_args.mask_history:
            raise ValueError("`train_on_prompt` or `mask_history` cannot be set as True except SFT.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
206
207
208
209
210
211
212

    if finetuning_args.stage == "sft" and training_args.do_predict and not training_args.predict_with_generate:
        raise ValueError("Please enable `predict_with_generate` to save model predictions.")

    if finetuning_args.stage in ["rm", "ppo"] and training_args.load_best_model_at_end:
        raise ValueError("RM and PPO stages do not support `load_best_model_at_end`.")

chenych's avatar
chenych committed
213
214
215
    if finetuning_args.stage == "ppo":
        if not training_args.do_train:
            raise ValueError("PPO training does not support evaluation, use the SFT stage to evaluate models.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
216

chenych's avatar
chenych committed
217
218
        if model_args.shift_attn:
            raise ValueError("PPO training is incompatible with S^2-Attn.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
219

chenych's avatar
chenych committed
220
221
        if finetuning_args.reward_model_type == "lora" and model_args.use_unsloth:
            raise ValueError("Unsloth does not support lora reward model.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
222

chenych's avatar
chenych committed
223
224
225
226
227
228
229
230
        if training_args.report_to and training_args.report_to[0] not in ["wandb", "tensorboard"]:
            raise ValueError("PPO only accepts wandb or tensorboard logger.")

    if training_args.parallel_mode == ParallelMode.NOT_DISTRIBUTED:
        raise ValueError("Please launch distributed training with `llamafactory-cli` or `torchrun`.")

    if training_args.deepspeed and training_args.parallel_mode != ParallelMode.DISTRIBUTED:
        raise ValueError("Please use `FORCE_TORCHRUN=1` to launch DeepSpeed training.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
231
232
233
234

    if training_args.max_steps == -1 and data_args.streaming:
        raise ValueError("Please specify `max_steps` in streaming mode.")

chenych's avatar
chenych committed
235
236
237
238
239
240
241
242
    if training_args.do_train and data_args.dataset is None:
        raise ValueError("Please specify dataset for training.")

    if (training_args.do_eval or training_args.do_predict) and (
        data_args.eval_dataset is None and data_args.val_size < 1e-6
    ):
        raise ValueError("Please specify dataset for evaluation.")

luopl's avatar
luopl committed
243
244
245
246
247
248
    if training_args.predict_with_generate:
        if is_deepspeed_zero3_enabled():
            raise ValueError("`predict_with_generate` is incompatible with DeepSpeed ZeRO-3.")

        if data_args.eval_dataset is None:
            raise ValueError("Cannot use `predict_with_generate` if `eval_dataset` is None.")
chenych's avatar
chenych committed
249

luopl's avatar
luopl committed
250
251
        if finetuning_args.compute_accuracy:
            raise ValueError("Cannot use `predict_with_generate` and `compute_accuracy` together.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
252
253
254
255

    if training_args.do_train and model_args.quantization_device_map == "auto":
        raise ValueError("Cannot use device map for quantized models in training.")

chenych's avatar
chenych committed
256
257
    if finetuning_args.pissa_init and is_deepspeed_zero3_enabled():
        raise ValueError("Please use scripts/pissa_init.py to initialize PiSSA in DeepSpeed ZeRO-3.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
258
259

    if finetuning_args.pure_bf16:
luopl's avatar
luopl committed
260
        if not (is_torch_bf16_gpu_available() or (is_torch_npu_available() and torch.npu.is_bf16_supported())):
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
261
262
            raise ValueError("This device does not support `pure_bf16`.")

chenych's avatar
chenych committed
263
264
        if is_deepspeed_zero3_enabled():
            raise ValueError("`pure_bf16` is incompatible with DeepSpeed ZeRO-3.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
265

luopl's avatar
luopl committed
266
267
268
269
270
271
    if training_args.parallel_mode == ParallelMode.DISTRIBUTED:
        if finetuning_args.use_galore and finetuning_args.galore_layerwise:
            raise ValueError("Distributed training does not support layer-wise GaLore.")

        if finetuning_args.use_apollo and finetuning_args.apollo_layerwise:
            raise ValueError("Distributed training does not support layer-wise APOLLO.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
272

luopl's avatar
luopl committed
273
274
275
276
277
        if finetuning_args.use_badam:
            if finetuning_args.badam_mode == "ratio":
                raise ValueError("Radio-based BAdam does not yet support distributed training, use layer-wise BAdam.")
            elif not is_deepspeed_zero3_enabled():
                raise ValueError("Layer-wise BAdam only supports DeepSpeed ZeRO-3 training.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
278

luopl's avatar
luopl committed
279
280
    if training_args.deepspeed is not None and (finetuning_args.use_galore or finetuning_args.use_apollo):
        raise ValueError("GaLore and APOLLO are incompatible with DeepSpeed yet.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
281
282
283
284

    if model_args.infer_backend == "vllm":
        raise ValueError("vLLM backend is only available for API, CLI and Web.")

chenych's avatar
chenych committed
285
286
287
288
    if model_args.use_unsloth and is_deepspeed_zero3_enabled():
        raise ValueError("Unsloth is incompatible with DeepSpeed ZeRO-3.")

    if data_args.neat_packing and not data_args.packing:
luopl's avatar
luopl committed
289
        logger.warning_rank0("`neat_packing` requires `packing` is True. Change `packing` to True.")
chenych's avatar
chenych committed
290
291
292
        data_args.packing = True

    _verify_model_args(model_args, data_args, finetuning_args)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
293
294
295
296
297
    _check_extra_dependencies(model_args, finetuning_args, training_args)

    if (
        training_args.do_train
        and finetuning_args.finetuning_type == "lora"
chenych's avatar
chenych committed
298
        and model_args.quantization_bit is None
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
299
300
301
        and model_args.resize_vocab
        and finetuning_args.additional_target is None
    ):
luopl's avatar
luopl committed
302
303
304
        logger.warning_rank0(
            "Remember to add embedding layers to `additional_target` to make the added tokens trainable."
        )
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
305
306

    if training_args.do_train and model_args.quantization_bit is not None and (not model_args.upcast_layernorm):
luopl's avatar
luopl committed
307
        logger.warning_rank0("We recommend enable `upcast_layernorm` in quantized training.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
308
309

    if training_args.do_train and (not training_args.fp16) and (not training_args.bf16):
luopl's avatar
luopl committed
310
        logger.warning_rank0("We recommend enable mixed precision training.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
311

luopl's avatar
luopl committed
312
313
314
315
316
    if (
        training_args.do_train
        and (finetuning_args.use_galore or finetuning_args.use_apollo)
        and not finetuning_args.pure_bf16
    ):
luopl's avatar
luopl committed
317
        logger.warning_rank0(
luopl's avatar
luopl committed
318
            "Using GaLore or APOLLO with mixed precision training may significantly increases GPU memory usage."
luopl's avatar
luopl committed
319
        )
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
320
321

    if (not training_args.do_train) and model_args.quantization_bit is not None:
luopl's avatar
luopl committed
322
        logger.warning_rank0("Evaluating model in 4/8-bit mode may cause lower scores.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
323
324

    if (not training_args.do_train) and finetuning_args.stage == "dpo" and finetuning_args.ref_model is None:
luopl's avatar
luopl committed
325
        logger.warning_rank0("Specify `ref_model` for computing rewards at evaluation.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
326
327
328

    # Post-process training arguments
    if (
chenych's avatar
chenych committed
329
        training_args.parallel_mode == ParallelMode.DISTRIBUTED
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
330
331
332
        and training_args.ddp_find_unused_parameters is None
        and finetuning_args.finetuning_type == "lora"
    ):
luopl's avatar
luopl committed
333
        logger.warning_rank0("`ddp_find_unused_parameters` needs to be set as False for LoRA in DDP training.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
334
335
336
337
338
        training_args.ddp_find_unused_parameters = False

    if finetuning_args.stage in ["rm", "ppo"] and finetuning_args.finetuning_type in ["full", "freeze"]:
        can_resume_from_checkpoint = False
        if training_args.resume_from_checkpoint is not None:
luopl's avatar
luopl committed
339
            logger.warning_rank0("Cannot resume from checkpoint in current stage.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
340
341
342
343
344
345
346
347
348
349
350
351
            training_args.resume_from_checkpoint = None
    else:
        can_resume_from_checkpoint = True

    if (
        training_args.resume_from_checkpoint is None
        and training_args.do_train
        and os.path.isdir(training_args.output_dir)
        and not training_args.overwrite_output_dir
        and can_resume_from_checkpoint
    ):
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
chenych's avatar
chenych committed
352
353
354
        if last_checkpoint is None and any(
            os.path.isfile(os.path.join(training_args.output_dir, name)) for name in CHECKPOINT_NAMES
        ):
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
355
356
357
358
            raise ValueError("Output directory already exists and is not empty. Please set `overwrite_output_dir`.")

        if last_checkpoint is not None:
            training_args.resume_from_checkpoint = last_checkpoint
luopl's avatar
luopl committed
359
360
            logger.info_rank0(f"Resuming training from {training_args.resume_from_checkpoint}.")
            logger.info_rank0("Change `output_dir` or use `overwrite_output_dir` to avoid.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
361
362
363
364
365
366

    if (
        finetuning_args.stage in ["rm", "ppo"]
        and finetuning_args.finetuning_type == "lora"
        and training_args.resume_from_checkpoint is not None
    ):
luopl's avatar
luopl committed
367
        logger.warning_rank0(
chenych's avatar
chenych committed
368
            f"Add {training_args.resume_from_checkpoint} to `adapter_name_or_path` to resume training from checkpoint."
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
369
370
371
372
373
374
375
376
377
378
        )

    # Post-process model arguments
    if training_args.bf16 or finetuning_args.pure_bf16:
        model_args.compute_dtype = torch.bfloat16
    elif training_args.fp16:
        model_args.compute_dtype = torch.float16

    model_args.device_map = {"": get_current_device()}
    model_args.model_max_length = data_args.cutoff_len
chenych's avatar
chenych committed
379
    model_args.block_diag_attn = data_args.neat_packing
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
380
381
    data_args.packing = data_args.packing if data_args.packing is not None else finetuning_args.stage == "pt"

chenych's avatar
chenych committed
382
    # Log on each process the small summary
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
383
    logger.info(
chenych's avatar
chenych committed
384
385
386
387
        f"Process rank: {training_args.process_index}, "
        f"world size: {training_args.world_size}, device: {training_args.device}, "
        f"distributed training: {training_args.parallel_mode == ParallelMode.DISTRIBUTED}, "
        f"compute dtype: {str(model_args.compute_dtype)}"
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
388
389
390
391
392
393
    )
    transformers.set_seed(training_args.seed)

    return model_args, data_args, training_args, finetuning_args, generating_args


chenych's avatar
chenych committed
394
def get_infer_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> _INFER_CLS:
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
395
396
397
398
399
400
401
402
403
    model_args, data_args, finetuning_args, generating_args = _parse_infer_args(args)

    _set_transformers_logging()

    if model_args.infer_backend == "vllm":
        if finetuning_args.stage != "sft":
            raise ValueError("vLLM engine only supports auto-regressive models.")

        if model_args.quantization_bit is not None:
chenych's avatar
chenych committed
404
            raise ValueError("vLLM engine does not support bnb quantization (GPTQ and AWQ are supported).")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
405
406
407
408

        if model_args.rope_scaling is not None:
            raise ValueError("vLLM engine does not support RoPE scaling.")

chenych's avatar
chenych committed
409
410
411
412
        if model_args.adapter_name_or_path is not None and len(model_args.adapter_name_or_path) != 1:
            raise ValueError("vLLM only accepts a single adapter. Merge them first.")

    _verify_model_args(model_args, data_args, finetuning_args)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
413
414
    _check_extra_dependencies(model_args, finetuning_args)

chenych's avatar
chenych committed
415
416
    if model_args.export_dir is not None and model_args.export_device == "cpu":
        model_args.device_map = {"": torch.device("cpu")}
chenych's avatar
chenych committed
417
418
        if data_args.cutoff_len != DataArguments().cutoff_len:  # override cutoff_len if it is not default
            model_args.model_max_length = data_args.cutoff_len
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
419
420
421
422
423
424
    else:
        model_args.device_map = "auto"

    return model_args, data_args, finetuning_args, generating_args


chenych's avatar
chenych committed
425
def get_eval_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> _EVAL_CLS:
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
426
427
428
429
430
431
432
    model_args, data_args, eval_args, finetuning_args = _parse_eval_args(args)

    _set_transformers_logging()

    if model_args.infer_backend == "vllm":
        raise ValueError("vLLM backend is only available for API, CLI and Web.")

chenych's avatar
chenych committed
433
    _verify_model_args(model_args, data_args, finetuning_args)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
434
435
436
437
438
439
440
    _check_extra_dependencies(model_args, finetuning_args)

    model_args.device_map = "auto"

    transformers.set_seed(eval_args.seed)

    return model_args, data_args, eval_args, finetuning_args