data_args.py 6.73 KB
Newer Older
chenych's avatar
chenych committed
1
# Copyright 2025 HuggingFace Inc. and the LlamaFactory team.
chenych's avatar
chenych committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# This code is inspired by the HuggingFace's transformers library.
# https://github.com/huggingface/transformers/blob/v4.40.0/examples/pytorch/language-modeling/run_clm.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

luopl's avatar
luopl committed
18
from dataclasses import asdict, dataclass, field
chenych's avatar
chenych committed
19
from typing import Any, Literal, Optional
chenych's avatar
chenych committed
20
21
22
23


@dataclass
class DataArguments:
chenych's avatar
chenych committed
24
    r"""Arguments pertaining to what data we are going to input our model for training and evaluation."""
chenych's avatar
chenych committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

    template: Optional[str] = field(
        default=None,
        metadata={"help": "Which template to use for constructing prompts in training and inference."},
    )
    dataset: Optional[str] = field(
        default=None,
        metadata={"help": "The name of dataset(s) to use for training. Use commas to separate multiple datasets."},
    )
    eval_dataset: Optional[str] = field(
        default=None,
        metadata={"help": "The name of dataset(s) to use for evaluation. Use commas to separate multiple datasets."},
    )
    dataset_dir: str = field(
        default="data",
        metadata={"help": "Path to the folder containing the datasets."},
    )
chenych's avatar
chenych committed
42
    media_dir: Optional[str] = field(
luopl's avatar
luopl committed
43
        default=None,
chenych's avatar
chenych committed
44
        metadata={"help": "Path to the folder containing the images, videos or audios. Defaults to `dataset_dir`."},
luopl's avatar
luopl committed
45
    )
chenych's avatar
chenych committed
46
    cutoff_len: int = field(
luopl's avatar
luopl committed
47
        default=2048,
chenych's avatar
chenych committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
        metadata={"help": "The cutoff length of the tokenized inputs in the dataset."},
    )
    train_on_prompt: bool = field(
        default=False,
        metadata={"help": "Whether or not to disable the mask on the prompt."},
    )
    mask_history: bool = field(
        default=False,
        metadata={"help": "Whether or not to mask the history and train on the last turn only."},
    )
    streaming: bool = field(
        default=False,
        metadata={"help": "Enable dataset streaming."},
    )
    buffer_size: int = field(
        default=16384,
        metadata={"help": "Size of the buffer to randomly sample examples from in dataset streaming."},
    )
    mix_strategy: Literal["concat", "interleave_under", "interleave_over"] = field(
        default="concat",
        metadata={"help": "Strategy to use in dataset mixing (concat/interleave) (undersampling/oversampling)."},
    )
    interleave_probs: Optional[str] = field(
        default=None,
        metadata={"help": "Probabilities to sample data from datasets. Use commas to separate multiple datasets."},
    )
    overwrite_cache: bool = field(
        default=False,
        metadata={"help": "Overwrite the cached training and evaluation sets."},
    )
luopl's avatar
luopl committed
78
79
80
81
    preprocessing_batch_size: int = field(
        default=1000,
        metadata={"help": "The number of examples in one group in pre-processing."},
    )
chenych's avatar
chenych committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the pre-processing."},
    )
    max_samples: Optional[int] = field(
        default=None,
        metadata={"help": "For debugging purposes, truncate the number of examples for each dataset."},
    )
    eval_num_beams: Optional[int] = field(
        default=None,
        metadata={"help": "Number of beams to use for evaluation. This argument will be passed to `model.generate`"},
    )
    ignore_pad_token_for_loss: bool = field(
        default=True,
        metadata={"help": "Whether or not to ignore the tokens corresponding to the pad label in loss computation."},
    )
    val_size: float = field(
        default=0.0,
luopl's avatar
luopl committed
100
        metadata={"help": "Size of the validation set, should be an integer or a float in range `[0,1)`."},
chenych's avatar
chenych committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
    )
    packing: Optional[bool] = field(
        default=None,
        metadata={"help": "Enable sequences packing in training. Will automatically enable in pre-training."},
    )
    neat_packing: bool = field(
        default=False,
        metadata={"help": "Enable sequence packing without cross-attention."},
    )
    tool_format: Optional[str] = field(
        default=None,
        metadata={"help": "Tool format to use for constructing function calling examples."},
    )
    tokenized_path: Optional[str] = field(
        default=None,
luopl's avatar
luopl committed
116
117
118
119
120
121
122
        metadata={
            "help": (
                "Path to save or load the tokenized datasets. "
                "If tokenized_path not exists, it will save the tokenized datasets. "
                "If tokenized_path exists, it will load the tokenized datasets."
            )
        },
chenych's avatar
chenych committed
123
124
125
126
127
128
129
130
131
132
133
    )

    def __post_init__(self):
        def split_arg(arg):
            if isinstance(arg, str):
                return [item.strip() for item in arg.split(",")]
            return arg

        self.dataset = split_arg(self.dataset)
        self.eval_dataset = split_arg(self.eval_dataset)

chenych's avatar
chenych committed
134
135
        if self.media_dir is None:
            self.media_dir = self.dataset_dir
luopl's avatar
luopl committed
136

chenych's avatar
chenych committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
        if self.dataset is None and self.val_size > 1e-6:
            raise ValueError("Cannot specify `val_size` if `dataset` is None.")

        if self.eval_dataset is not None and self.val_size > 1e-6:
            raise ValueError("Cannot specify `val_size` if `eval_dataset` is not None.")

        if self.interleave_probs is not None:
            if self.mix_strategy == "concat":
                raise ValueError("`interleave_probs` is only valid for interleaved mixing.")

            self.interleave_probs = list(map(float, split_arg(self.interleave_probs)))
            if self.dataset is not None and len(self.dataset) != len(self.interleave_probs):
                raise ValueError("The length of dataset and interleave probs should be identical.")

            if self.eval_dataset is not None and len(self.eval_dataset) != len(self.interleave_probs):
                raise ValueError("The length of eval dataset and interleave probs should be identical.")

        if self.streaming and self.val_size > 1e-6 and self.val_size < 1:
            raise ValueError("Streaming mode should have an integer val size.")

        if self.streaming and self.max_samples is not None:
            raise ValueError("`max_samples` is incompatible with `streaming`.")

        if self.mask_history and self.train_on_prompt:
            raise ValueError("`mask_history` is incompatible with `train_on_prompt`.")
luopl's avatar
luopl committed
162

chenych's avatar
chenych committed
163
    def to_dict(self) -> dict[str, Any]:
luopl's avatar
luopl committed
164
        return asdict(self)