pairwise.py 5.51 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from collections import defaultdict
chenych's avatar
chenych committed
16
from typing import TYPE_CHECKING, Any, Optional
chenych's avatar
chenych committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

from ...extras import logging
from ...extras.constants import IGNORE_INDEX
from .processor_utils import DatasetProcessor, infer_seqlen


if TYPE_CHECKING:
    from ..mm_plugin import AudioInput, ImageInput, VideoInput


logger = logging.get_logger(__name__)


class PairwiseDatasetProcessor(DatasetProcessor):
    def _encode_data_example(
        self,
chenych's avatar
chenych committed
33
34
        prompt: list[dict[str, str]],
        response: list[dict[str, str]],
chenych's avatar
chenych committed
35
36
        system: Optional[str],
        tools: Optional[str],
chenych's avatar
chenych committed
37
38
39
40
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
    ) -> tuple[list[int], list[int], list[int], list[int]]:
chenych's avatar
chenych committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
        chosen_messages = self.template.mm_plugin.process_messages(
            prompt + [response[0]], images, videos, audios, self.processor
        )
        rejected_messages = self.template.mm_plugin.process_messages(
            prompt + [response[1]], images, videos, audios, self.processor
        )
        prompt_ids, chosen_ids = self.template.encode_oneturn(self.tokenizer, chosen_messages, system, tools)
        _, rejected_ids = self.template.encode_oneturn(self.tokenizer, rejected_messages, system, tools)

        if self.template.efficient_eos:
            chosen_ids += [self.tokenizer.eos_token_id]
            rejected_ids += [self.tokenizer.eos_token_id]

        prompt_ids, _ = self.template.mm_plugin.process_token_ids(
            prompt_ids, None, images, videos, audios, self.tokenizer, self.processor
        )
        # consider the response is more important
        source_len, target_len = infer_seqlen(
            len(prompt_ids), max(len(chosen_ids), len(rejected_ids)), self.data_args.cutoff_len
        )
        prompt_ids = prompt_ids[:source_len]
        chosen_ids = chosen_ids[:target_len]
        rejected_ids = rejected_ids[:target_len]

        chosen_input_ids = prompt_ids + chosen_ids
        chosen_labels = [IGNORE_INDEX] * source_len + chosen_ids
        rejected_input_ids = prompt_ids + rejected_ids
        rejected_labels = [IGNORE_INDEX] * source_len + rejected_ids
        return chosen_input_ids, chosen_labels, rejected_input_ids, rejected_labels

chenych's avatar
chenych committed
71
    def preprocess_dataset(self, examples: dict[str, list[Any]]) -> dict[str, list[Any]]:
chenych's avatar
chenych committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
        # build input pairs with format `<bos> X`, `Y1 <eos>` and `Y2 <eos>`
        model_inputs = defaultdict(list)
        for i in range(len(examples["_prompt"])):
            if len(examples["_prompt"][i]) % 2 != 1 or len(examples["_response"][i]) < 2:
                logger.warning_rank0(
                    "Dropped invalid example: {}".format(examples["_prompt"][i] + examples["_response"][i])
                )
                continue

            chosen_input_ids, chosen_labels, rejected_input_ids, rejected_labels = self._encode_data_example(
                prompt=examples["_prompt"][i],
                response=examples["_response"][i],
                system=examples["_system"][i],
                tools=examples["_tools"][i],
                images=examples["_images"][i] or [],
                videos=examples["_videos"][i] or [],
                audios=examples["_audios"][i] or [],
            )
            model_inputs["chosen_input_ids"].append(chosen_input_ids)
            model_inputs["chosen_attention_mask"].append([1] * len(chosen_input_ids))
            model_inputs["chosen_labels"].append(chosen_labels)
            model_inputs["rejected_input_ids"].append(rejected_input_ids)
            model_inputs["rejected_attention_mask"].append([1] * len(rejected_input_ids))
            model_inputs["rejected_labels"].append(rejected_labels)
            model_inputs["images"].append(examples["_images"][i])
            model_inputs["videos"].append(examples["_videos"][i])
            model_inputs["audios"].append(examples["_audios"][i])

        return model_inputs

chenych's avatar
chenych committed
102
    def print_data_example(self, example: dict[str, list[int]]) -> None:
chenych's avatar
chenych committed
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
        valid_chosen_labels = list(filter(lambda x: x != IGNORE_INDEX, example["chosen_labels"]))
        valid_rejected_labels = list(filter(lambda x: x != IGNORE_INDEX, example["rejected_labels"]))
        print("chosen_input_ids:\n{}".format(example["chosen_input_ids"]))
        print(
            "chosen_inputs:\n{}".format(self.tokenizer.decode(example["chosen_input_ids"], skip_special_tokens=False))
        )
        print("chosen_label_ids:\n{}".format(example["chosen_labels"]))
        print(f"chosen_labels:\n{self.tokenizer.decode(valid_chosen_labels, skip_special_tokens=False)}")
        print("rejected_input_ids:\n{}".format(example["rejected_input_ids"]))
        print(
            "rejected_inputs:\n{}".format(
                self.tokenizer.decode(example["rejected_input_ids"], skip_special_tokens=False)
            )
        )
        print("rejected_label_ids:\n{}".format(example["rejected_labels"]))
        print(f"rejected_labels:\n{self.tokenizer.decode(valid_rejected_labels, skip_special_tokens=False)}")