feedback.py 5.91 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from collections import defaultdict
chenych's avatar
chenych committed
16
from typing import TYPE_CHECKING, Any, Optional
chenych's avatar
chenych committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

from ...extras import logging
from ...extras.constants import IGNORE_INDEX
from .processor_utils import DatasetProcessor, infer_seqlen


if TYPE_CHECKING:
    from ..mm_plugin import AudioInput, ImageInput, VideoInput


logger = logging.get_logger(__name__)


class FeedbackDatasetProcessor(DatasetProcessor):
    def _encode_data_example(
        self,
chenych's avatar
chenych committed
33
34
35
        prompt: list[dict[str, str]],
        response: list[dict[str, str]],
        kl_response: list[dict[str, str]],
chenych's avatar
chenych committed
36
37
        system: Optional[str],
        tools: Optional[str],
chenych's avatar
chenych committed
38
39
40
41
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
    ) -> tuple[list[int], list[int], list[int], list[int], bool]:
chenych's avatar
chenych committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
        if response[0]["content"]:  # desired example
            kto_tag = True
            messages = prompt + [response[0]]
        else:  # undesired example
            kto_tag = False
            messages = prompt + [response[1]]

        if kl_response[0]["content"]:
            kl_messages = prompt + [kl_response[0]]
        else:
            kl_messages = prompt + [kl_response[1]]

        messages = self.template.mm_plugin.process_messages(messages, images, videos, audios, self.processor)
        kl_messages = self.template.mm_plugin.process_messages(kl_messages, images, videos, audios, self.processor)
        prompt_ids, response_ids = self.template.encode_oneturn(self.tokenizer, messages, system, tools)
        kl_prompt_ids, kl_response_ids = self.template.encode_oneturn(self.tokenizer, kl_messages, system, tools)

        if self.template.efficient_eos:
            response_ids += [self.tokenizer.eos_token_id]
            kl_response_ids += [self.tokenizer.eos_token_id]

        prompt_ids, _ = self.template.mm_plugin.process_token_ids(
            prompt_ids, None, images, videos, audios, self.tokenizer, self.processor
        )
        kl_prompt_ids, _ = self.template.mm_plugin.process_token_ids(
            kl_prompt_ids, None, images, videos, audios, self.tokenizer, self.processor
        )

        source_len, target_len = infer_seqlen(len(prompt_ids), len(response_ids), self.data_args.cutoff_len)
        prompt_ids = prompt_ids[:source_len]
        response_ids = response_ids[:target_len]
        kl_source_len, kl_target_len = infer_seqlen(
            len(kl_prompt_ids), len(kl_response_ids), self.data_args.cutoff_len
        )
        kl_prompt_ids = kl_prompt_ids[:kl_source_len]
        kl_response_ids = kl_response_ids[:kl_target_len]

        input_ids = prompt_ids + response_ids
        labels = [IGNORE_INDEX] * source_len + response_ids
        kl_input_ids = kl_prompt_ids + kl_response_ids
        kl_labels = [IGNORE_INDEX] * kl_source_len + kl_response_ids
        return input_ids, labels, kl_input_ids, kl_labels, kto_tag

chenych's avatar
chenych committed
85
86
87
    def preprocess_dataset(self, examples: dict[str, list[Any]]) -> dict[str, list[Any]]:
        # Creates mismatched pairs of prompts and completions for the KL dataset by adding a +1 offset to the order of completions.
        kl_response = [examples["_response"][-1]] + examples["_response"][:-1]
chenych's avatar
chenych committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
        model_inputs = defaultdict(list)
        for i in range(len(examples["_prompt"])):
            if len(examples["_prompt"][i]) % 2 != 1 or len(examples["_response"][i]) < 2:
                logger.warning_rank0(
                    "Dropped invalid example: {}".format(examples["_prompt"][i] + examples["_response"][i])
                )
                continue

            input_ids, labels, kl_input_ids, kl_labels, kto_tag = self._encode_data_example(
                prompt=examples["_prompt"][i],
                response=examples["_response"][i],
                kl_response=kl_response[i],
                system=examples["_system"][i],
                tools=examples["_tools"][i],
                images=examples["_images"][i] or [],
                videos=examples["_videos"][i] or [],
                audios=examples["_audios"][i] or [],
            )
            model_inputs["input_ids"].append(input_ids)
            model_inputs["attention_mask"].append([1] * len(input_ids))
            model_inputs["labels"].append(labels)
            model_inputs["kl_input_ids"].append(kl_input_ids)
            model_inputs["kl_attention_mask"].append([1] * len(kl_input_ids))
            model_inputs["kl_labels"].append(kl_labels)
            model_inputs["kto_tags"].append(kto_tag)
            model_inputs["images"].append(examples["_images"][i])
            model_inputs["videos"].append(examples["_videos"][i])
            model_inputs["audios"].append(examples["_audios"][i])

        desirable_num = sum([1 for tag in model_inputs["kto_tags"] if tag])
        undesirable_num = len(model_inputs["kto_tags"]) - desirable_num
        if desirable_num == 0 or undesirable_num == 0:
            logger.warning_rank0("Your dataset only has one preference type.")

        return model_inputs

chenych's avatar
chenych committed
124
    def print_data_example(self, example: dict[str, list[int]]) -> None:
chenych's avatar
chenych committed
125
126
127
128
129
        valid_labels = list(filter(lambda x: x != IGNORE_INDEX, example["labels"]))
        print("input_ids:\n{}".format(example["input_ids"]))
        print("inputs:\n{}".format(self.tokenizer.decode(example["input_ids"], skip_special_tokens=False)))
        print("label_ids:\n{}".format(example["labels"]))
        print(f"labels:\n{self.tokenizer.decode(valid_labels, skip_special_tokens=False)}")