converter.py 11 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
from abc import abstractmethod
from dataclasses import dataclass
chenych's avatar
chenych committed
18
from typing import TYPE_CHECKING, Any, Optional, Union
chenych's avatar
chenych committed
19
20
21
22
23
24
25
26
27
28

from ..extras import logging
from .data_utils import Role


if TYPE_CHECKING:
    from datasets import Dataset, IterableDataset
    from transformers import Seq2SeqTrainingArguments

    from ..hparams import DataArguments
chenych's avatar
chenych committed
29
    from .mm_plugin import AudioInput, ImageInput, VideoInput
chenych's avatar
chenych committed
30
31
    from .parser import DatasetAttr

chenych's avatar
chenych committed
32
33
34
    MediaType = Union[ImageInput, VideoInput, AudioInput]


chenych's avatar
chenych committed
35
36
37
38
39
40
41
42
logger = logging.get_logger(__name__)


@dataclass
class DatasetConverter:
    dataset_attr: "DatasetAttr"
    data_args: "DataArguments"

chenych's avatar
chenych committed
43
44
45
46
47
48
    def _find_medias(self, medias: Union["MediaType", list["MediaType"], None]) -> Optional[list["MediaType"]]:
        r"""Optionally concatenate media path to media dir when loading from local disk."""
        if medias is None:
            return None
        elif not isinstance(medias, list):
            medias = [medias]
chenych's avatar
chenych committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
        elif len(medias) == 0:
            return None
        else:
            medias = medias[:]

        if self.dataset_attr.load_from in ["script", "file"] and isinstance(medias[0], str):
            for i in range(len(medias)):
                if os.path.isfile(os.path.join(self.data_args.media_dir, medias[i])):
                    medias[i] = os.path.join(self.data_args.media_dir, medias[i])
                else:
                    logger.warning_rank0_once(f"Media {medias[i]} does not exist in `media_dir`. Use original path.")

        return medias

    @abstractmethod
chenych's avatar
chenych committed
64
65
    def __call__(self, example: dict[str, Any]) -> dict[str, Any]:
        r"""Convert a single example in the dataset to the standard format."""
chenych's avatar
chenych committed
66
67
68
69
70
        ...


@dataclass
class AlpacaDatasetConverter(DatasetConverter):
chenych's avatar
chenych committed
71
    def __call__(self, example: dict[str, Any]) -> dict[str, Any]:
chenych's avatar
chenych committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
        prompt = []
        if self.dataset_attr.history and isinstance(example[self.dataset_attr.history], list):
            for old_prompt, old_response in example[self.dataset_attr.history]:
                prompt.append({"role": Role.USER.value, "content": old_prompt})
                prompt.append({"role": Role.ASSISTANT.value, "content": old_response})

        query = []
        if self.dataset_attr.prompt and example[self.dataset_attr.prompt]:
            query.append(example[self.dataset_attr.prompt])

        if self.dataset_attr.query and example[self.dataset_attr.query]:
            query.append(example[self.dataset_attr.query])

        prompt.append({"role": Role.USER.value, "content": "\n".join(query)})  # "prompt\nquery"

        if self.dataset_attr.kto_tag and isinstance(example[self.dataset_attr.kto_tag], bool):  # kto example
            response = [{"role": Role.ASSISTANT.value, "content": example[self.dataset_attr.response]}]
            if example[self.dataset_attr.kto_tag]:
                response = response + [{"role": Role.ASSISTANT.value, "content": ""}]
            else:
                response = [{"role": Role.ASSISTANT.value, "content": ""}] + response
        elif (
            self.dataset_attr.ranking
            and isinstance(example[self.dataset_attr.chosen], str)
            and isinstance(example[self.dataset_attr.rejected], str)
        ):  # pairwise example
            response = [
                {"role": Role.ASSISTANT.value, "content": example[self.dataset_attr.chosen]},
                {"role": Role.ASSISTANT.value, "content": example[self.dataset_attr.rejected]},
            ]
        elif self.dataset_attr.response and isinstance(example[self.dataset_attr.response], str):  # normal example
            response = [{"role": Role.ASSISTANT.value, "content": example[self.dataset_attr.response]}]
        else:  # unsupervised
            response = []

        output = {
            "_prompt": prompt,
            "_response": response,
            "_system": example[self.dataset_attr.system] if self.dataset_attr.system else "",
            "_tools": example[self.dataset_attr.tools] if self.dataset_attr.tools else "",
            "_images": self._find_medias(example[self.dataset_attr.images]) if self.dataset_attr.images else None,
            "_videos": self._find_medias(example[self.dataset_attr.videos]) if self.dataset_attr.videos else None,
            "_audios": self._find_medias(example[self.dataset_attr.audios]) if self.dataset_attr.audios else None,
        }
        return output


@dataclass
class SharegptDatasetConverter(DatasetConverter):
chenych's avatar
chenych committed
121
    def __call__(self, example: dict[str, Any]) -> dict[str, Any]:
chenych's avatar
chenych committed
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
        tag_mapping = {
            self.dataset_attr.user_tag: Role.USER.value,
            self.dataset_attr.assistant_tag: Role.ASSISTANT.value,
            self.dataset_attr.observation_tag: Role.OBSERVATION.value,
            self.dataset_attr.function_tag: Role.FUNCTION.value,
            self.dataset_attr.system_tag: Role.SYSTEM.value,
        }
        odd_tags = (self.dataset_attr.user_tag, self.dataset_attr.observation_tag)
        even_tags = (self.dataset_attr.assistant_tag, self.dataset_attr.function_tag)
        accept_tags = (odd_tags, even_tags)
        messages = example[self.dataset_attr.messages]
        if (
            self.dataset_attr.system_tag
            and len(messages) != 0
            and messages[0][self.dataset_attr.role_tag] == self.dataset_attr.system_tag
        ):
            system = messages[0][self.dataset_attr.content_tag]
            messages = messages[1:]
        else:
            system = example[self.dataset_attr.system] if self.dataset_attr.system else ""

        aligned_messages = []
        broken_data = False
        for turn_idx, message in enumerate(messages):
            if message[self.dataset_attr.role_tag] not in accept_tags[turn_idx % 2]:
                logger.warning_rank0(f"Invalid role tag in {messages}.")
                broken_data = True
                break

            aligned_messages.append(
                {
                    "role": tag_mapping[message[self.dataset_attr.role_tag]],
                    "content": message[self.dataset_attr.content_tag],
                }
            )

        if (not self.dataset_attr.ranking and len(aligned_messages) % 2 != 0) or (
            self.dataset_attr.ranking and len(aligned_messages) % 2 == 0
        ):
            logger.warning_rank0(f"Invalid message count in {messages}.")
            broken_data = True

        if broken_data:
            logger.warning_rank0("Skipping this abnormal example.")
            prompt, response = [], []
        elif self.dataset_attr.kto_tag and isinstance(example[self.dataset_attr.kto_tag], bool):  # kto example
            prompt = aligned_messages[:-1]
            response = aligned_messages[-1:]
            if example[self.dataset_attr.kto_tag]:
                response = response + [{"role": Role.ASSISTANT.value, "content": ""}]
            else:
                response = [{"role": Role.ASSISTANT.value, "content": ""}] + response
        elif (
            self.dataset_attr.ranking
            and isinstance(example[self.dataset_attr.chosen], dict)
            and isinstance(example[self.dataset_attr.rejected], dict)
        ):  # pairwise example
            chosen = example[self.dataset_attr.chosen]
            rejected = example[self.dataset_attr.rejected]
            if (
                chosen[self.dataset_attr.role_tag] not in accept_tags[-1]
                or rejected[self.dataset_attr.role_tag] not in accept_tags[-1]
            ):
                logger.warning_rank0(f"Invalid role tag in {[chosen, rejected]}.")
                broken_data = True

            prompt = aligned_messages
            response = [
                {
                    "role": tag_mapping[chosen[self.dataset_attr.role_tag]],
                    "content": chosen[self.dataset_attr.content_tag],
                },
                {
                    "role": tag_mapping[rejected[self.dataset_attr.role_tag]],
                    "content": rejected[self.dataset_attr.content_tag],
                },
            ]
        else:  # normal example
            prompt = aligned_messages[:-1]
            response = aligned_messages[-1:]

        output = {
            "_prompt": prompt,
            "_response": response,
            "_system": system,
            "_tools": example[self.dataset_attr.tools] if self.dataset_attr.tools else "",
            "_images": self._find_medias(example[self.dataset_attr.images]) if self.dataset_attr.images else None,
            "_videos": self._find_medias(example[self.dataset_attr.videos]) if self.dataset_attr.videos else None,
            "_audios": self._find_medias(example[self.dataset_attr.audios]) if self.dataset_attr.audios else None,
        }
        return output


DATASET_CONVERTERS = {
    "alpaca": AlpacaDatasetConverter,
    "sharegpt": SharegptDatasetConverter,
}


chenych's avatar
chenych committed
221
222
def register_dataset_converter(name: str, dataset_converter: type["DatasetConverter"]) -> None:
    r"""Register a new dataset converter."""
chenych's avatar
chenych committed
223
224
225
226
227
228
229
    if name in DATASET_CONVERTERS:
        raise ValueError(f"Dataset converter {name} already exists.")

    DATASET_CONVERTERS[name] = dataset_converter


def get_dataset_converter(name: str, dataset_attr: "DatasetAttr", data_args: "DataArguments") -> "DatasetConverter":
chenych's avatar
chenych committed
230
    r"""Get a dataset converter."""
chenych's avatar
chenych committed
231
232
233
234
235
236
237
238
239
240
241
242
    if name not in DATASET_CONVERTERS:
        raise ValueError(f"Dataset converter {name} not found.")

    return DATASET_CONVERTERS[name](dataset_attr, data_args)


def align_dataset(
    dataset: Union["Dataset", "IterableDataset"],
    dataset_attr: "DatasetAttr",
    data_args: "DataArguments",
    training_args: "Seq2SeqTrainingArguments",
) -> Union["Dataset", "IterableDataset"]:
chenych's avatar
chenych committed
243
244
    r"""Align the dataset to a specific format.

chenych's avatar
chenych committed
245
    Aligned dataset:
chenych's avatar
chenych committed
246
247
248
249
250
251
252
    _prompt: [{"role": "user", "content": "..."}] * (2T - 1)
    _response: [{"role": "assistant", "content": "..."}] * N (N > 1 for ranking dataset)
    _system: "..."
    _tools: "..."
    _images: []
    _videos: []
    _audios: []
chenych's avatar
chenych committed
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
    """
    column_names = list(next(iter(dataset)).keys())
    kwargs = {}
    if not data_args.streaming:
        kwargs = dict(
            num_proc=data_args.preprocessing_num_workers,
            load_from_cache_file=(not data_args.overwrite_cache) or (training_args.local_process_index != 0),
            desc="Converting format of dataset",
        )

    dataset_converter = get_dataset_converter(dataset_attr.formatting, dataset_attr, data_args)
    return dataset.map(
        dataset_converter,
        batched=False,
        remove_columns=column_names,
        **kwargs,
    )