length_cdf.py 2.44 KB
Newer Older
chenych's avatar
chenych committed
1
# Copyright 2025 the LlamaFactory team.
luopl's avatar
luopl committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from collections import defaultdict

import fire
from tqdm import tqdm

from llamafactory.data import get_dataset, get_template_and_fix_tokenizer
from llamafactory.hparams import get_train_args
from llamafactory.model import load_tokenizer


def length_cdf(
    model_name_or_path: str,
    dataset: str = "alpaca_en_demo",
    dataset_dir: str = "data",
    template: str = "default",
    interval: int = 1000,
):
chenych's avatar
chenych committed
32
33
    r"""Calculate the distribution of the input lengths in the dataset.

luopl's avatar
luopl committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
    Usage: export CUDA_VISIBLE_DEVICES=0
    python length_cdf.py --model_name_or_path path_to_model --dataset alpaca_en_demo --template default
    """
    model_args, data_args, training_args, _, _ = get_train_args(
        dict(
            stage="sft",
            model_name_or_path=model_name_or_path,
            dataset=dataset,
            dataset_dir=dataset_dir,
            template=template,
            cutoff_len=1_000_000,
            preprocessing_num_workers=16,
            output_dir="dummy_dir",
            overwrite_cache=True,
            do_train=True,
        )
    )
    tokenizer_module = load_tokenizer(model_args)
    template = get_template_and_fix_tokenizer(tokenizer_module["tokenizer"], data_args)
    trainset = get_dataset(template, model_args, data_args, training_args, "sft", **tokenizer_module)["train_dataset"]
    total_num = len(trainset)
    length_dict = defaultdict(int)
    for sample in tqdm(trainset["input_ids"], desc="Collecting lengths"):
        length_dict[len(sample) // interval * interval] += 1

    length_tuples = list(length_dict.items())
    length_tuples.sort()
    count_accu, prob_accu = 0, 0
    for length, count in length_tuples:
        count_accu += count
        prob_accu += count / total_num * 100
        print(f"{count_accu:d} ({prob_accu:.2f}%) samples have length < {length + interval}.")


if __name__ == "__main__":
    fire.Fire(length_cdf)