chatter.py 6.07 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
15
16
17
18
import json
import os
from typing import TYPE_CHECKING, Dict, Generator, List, Optional, Sequence, Tuple

chenych's avatar
chenych committed
19
20
from numpy.typing import NDArray

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
21
22
from ..chat import ChatModel
from ..data import Role
chenych's avatar
chenych committed
23
from ..extras.constants import PEFT_METHODS
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
24
25
from ..extras.misc import torch_gc
from ..extras.packages import is_gradio_available
chenych's avatar
chenych committed
26
from .common import QUANTIZATION_BITS, get_save_dir
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from .locales import ALERTS


if TYPE_CHECKING:
    from ..chat import BaseEngine
    from .manager import Manager


if is_gradio_available():
    import gradio as gr


class WebChatModel(ChatModel):
    def __init__(self, manager: "Manager", demo_mode: bool = False, lazy_init: bool = True) -> None:
        self.manager = manager
        self.demo_mode = demo_mode
        self.engine: Optional["BaseEngine"] = None

        if not lazy_init:  # read arguments from command line
            super().__init__()

        if demo_mode and os.environ.get("DEMO_MODEL") and os.environ.get("DEMO_TEMPLATE"):  # load demo model
            model_name_or_path = os.environ.get("DEMO_MODEL")
            template = os.environ.get("DEMO_TEMPLATE")
chenych's avatar
chenych committed
51
52
53
54
            infer_backend = os.environ.get("DEMO_BACKEND", "huggingface")
            super().__init__(
                dict(model_name_or_path=model_name_or_path, template=template, infer_backend=infer_backend)
            )
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
55
56
57
58
59
60
61

    @property
    def loaded(self) -> bool:
        return self.engine is not None

    def load_model(self, data) -> Generator[str, None, None]:
        get = lambda elem_id: data[self.manager.get_elem_by_id(elem_id)]
chenych's avatar
chenych committed
62
63
        lang, model_name, model_path = get("top.lang"), get("top.model_name"), get("top.model_path")
        finetuning_type, checkpoint_path = get("top.finetuning_type"), get("top.checkpoint_path")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
64
65
66
        error = ""
        if self.loaded:
            error = ALERTS["err_exists"][lang]
chenych's avatar
chenych committed
67
        elif not model_name:
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
68
            error = ALERTS["err_no_model"][lang]
chenych's avatar
chenych committed
69
        elif not model_path:
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
70
71
72
73
74
75
76
77
78
            error = ALERTS["err_no_path"][lang]
        elif self.demo_mode:
            error = ALERTS["err_demo"][lang]

        if error:
            gr.Warning(error)
            yield error
            return

chenych's avatar
chenych committed
79
80
        if get("top.quantization_bit") in QUANTIZATION_BITS:
            quantization_bit = int(get("top.quantization_bit"))
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
81
        else:
chenych's avatar
chenych committed
82
            quantization_bit = None
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
83
84
85

        yield ALERTS["info_loading"][lang]
        args = dict(
chenych's avatar
chenych committed
86
87
88
89
            model_name_or_path=model_path,
            finetuning_type=finetuning_type,
            quantization_bit=quantization_bit,
            quantization_method=get("top.quantization_method"),
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
90
            template=get("top.template"),
chenych's avatar
chenych committed
91
            flash_attn="fa2" if get("top.booster") == "flashattn2" else "auto",
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
92
            use_unsloth=(get("top.booster") == "unsloth"),
chenych's avatar
chenych committed
93
            visual_inputs=get("top.visual_inputs"),
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
94
95
            rope_scaling=get("top.rope_scaling") if get("top.rope_scaling") in ["linear", "dynamic"] else None,
            infer_backend=get("infer.infer_backend"),
chenych's avatar
chenych committed
96
            infer_dtype=get("infer.infer_dtype"),
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
97
98
        )

chenych's avatar
chenych committed
99
100
101
102
103
104
105
106
107
        if checkpoint_path:
            if finetuning_type in PEFT_METHODS:  # list
                args["adapter_name_or_path"] = ",".join(
                    [get_save_dir(model_name, finetuning_type, adapter) for adapter in checkpoint_path]
                )
            else:  # str
                args["model_name_or_path"] = get_save_dir(model_name, finetuning_type, checkpoint_path)

        super().__init__(args)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
        yield ALERTS["info_loaded"][lang]

    def unload_model(self, data) -> Generator[str, None, None]:
        lang = data[self.manager.get_elem_by_id("top.lang")]

        if self.demo_mode:
            gr.Warning(ALERTS["err_demo"][lang])
            yield ALERTS["err_demo"][lang]
            return

        yield ALERTS["info_unloading"][lang]
        self.engine = None
        torch_gc()
        yield ALERTS["info_unloaded"][lang]

    def append(
        self,
        chatbot: List[List[Optional[str]]],
        messages: Sequence[Dict[str, str]],
        role: str,
        query: str,
    ) -> Tuple[List[List[Optional[str]]], List[Dict[str, str]], str]:
        return chatbot + [[query, None]], messages + [{"role": role, "content": query}], ""

    def stream(
        self,
        chatbot: List[List[Optional[str]]],
        messages: Sequence[Dict[str, str]],
        system: str,
        tools: str,
chenych's avatar
chenych committed
138
        image: Optional[NDArray],
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
139
140
141
142
143
144
145
        max_new_tokens: int,
        top_p: float,
        temperature: float,
    ) -> Generator[Tuple[List[List[Optional[str]]], List[Dict[str, str]]], None, None]:
        chatbot[-1][1] = ""
        response = ""
        for new_text in self.stream_chat(
chenych's avatar
chenych committed
146
            messages, system, tools, image, max_new_tokens=max_new_tokens, top_p=top_p, temperature=temperature
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
147
148
149
        ):
            response += new_text
            if tools:
chenych's avatar
chenych committed
150
                result = self.engine.template.extract_tool(response)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
151
152
153
            else:
                result = response

chenych's avatar
chenych committed
154
155
156
157
158
            if isinstance(result, list):
                tool_calls = [{"name": tool[0], "arguments": json.loads(tool[1])} for tool in result]
                tool_calls = json.dumps(tool_calls, indent=4, ensure_ascii=False)
                output_messages = messages + [{"role": Role.FUNCTION.value, "content": tool_calls}]
                bot_text = "```json\n" + tool_calls + "\n```"
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
159
160
161
162
163
164
            else:
                output_messages = messages + [{"role": Role.ASSISTANT.value, "content": result}]
                bot_text = result

            chatbot[-1][1] = bot_text
            yield chatbot, output_messages