evaluator.py 7.13 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# Copyright 2024 the LlamaFactory team.
#
# This code is inspired by the Dan's test library.
# https://github.com/hendrycks/test/blob/master/evaluate_flan.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# MIT License
#
# Copyright (c) 2020 Dan Hendrycks
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

import json
import os
from typing import Any, Dict, List, Optional

import numpy as np
import torch
from datasets import load_dataset
from tqdm import tqdm, trange
from transformers.utils import cached_file

from ..data import get_template_and_fix_tokenizer
from ..extras.constants import CHOICES, SUBJECTS
from ..hparams import get_eval_args
from ..model import load_model, load_tokenizer
from .template import get_eval_template


class Evaluator:
    def __init__(self, args: Optional[Dict[str, Any]] = None) -> None:
        self.model_args, self.data_args, self.eval_args, finetuning_args = get_eval_args(args)
chenych's avatar
chenych committed
60
        self.tokenizer = load_tokenizer(self.model_args)["tokenizer"]
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
61
62
63
64
        self.tokenizer.padding_side = "right"  # avoid overflow issue in batched inference for llama2
        self.template = get_template_and_fix_tokenizer(self.tokenizer, self.data_args.template)
        self.model = load_model(self.tokenizer, self.model_args, finetuning_args)
        self.eval_template = get_eval_template(self.eval_args.lang)
chenych's avatar
chenych committed
65
        self.choice_inputs = [self.tokenizer.encode(ch, add_special_tokens=False)[-1] for ch in CHOICES]
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
66
67
68
69
70
71
72
73
74
75

    @torch.inference_mode()
    def batch_inference(self, batch_input: Dict[str, torch.Tensor]) -> List[str]:
        logits = self.model(**batch_input).logits
        lengths = torch.sum(batch_input["attention_mask"], dim=-1)
        word_probs = torch.stack([logits[i, lengths[i] - 1] for i in range(len(lengths))], dim=0)
        choice_probs = torch.nn.functional.softmax(word_probs[:, self.choice_inputs], dim=-1).detach()
        return [chr(ord("A") + offset.item()) for offset in torch.argmax(choice_probs, dim=-1)]

    def eval(self) -> None:
chenych's avatar
chenych committed
76
77
78
        eval_task = self.eval_args.task.split("_")[0]
        eval_split = self.eval_args.task.split("_")[1]

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
79
        mapping = cached_file(
chenych's avatar
chenych committed
80
            path_or_repo_id=os.path.join(self.eval_args.task_dir, eval_task),
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
81
82
83
84
85
86
87
88
89
90
91
92
93
            filename="mapping.json",
            cache_dir=self.model_args.cache_dir,
            token=self.model_args.hf_hub_token,
        )

        with open(mapping, "r", encoding="utf-8") as f:
            categorys: Dict[str, Dict[str, str]] = json.load(f)

        category_corrects = {subj: np.array([], dtype="bool") for subj in SUBJECTS}
        pbar = tqdm(categorys.keys(), desc="Processing subjects", position=0)
        results = {}
        for subject in pbar:
            dataset = load_dataset(
chenych's avatar
chenych committed
94
                path=os.path.join(self.eval_args.task_dir, eval_task),
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
95
96
97
98
                name=subject,
                cache_dir=self.model_args.cache_dir,
                download_mode=self.eval_args.download_mode,
                token=self.model_args.hf_hub_token,
chenych's avatar
chenych committed
99
                trust_remote_code=True,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
100
101
102
            )
            pbar.set_postfix_str(categorys[subject]["name"])
            inputs, outputs, labels = [], [], []
chenych's avatar
chenych committed
103
            for i in trange(len(dataset[eval_split]), desc="Formatting batches", position=1, leave=False):
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
104
105
106
107
                support_set = (
                    dataset["train"].shuffle().select(range(min(self.eval_args.n_shot, len(dataset["train"]))))
                )
                messages = self.eval_template.format_example(
chenych's avatar
chenych committed
108
                    target_data=dataset[eval_split][i],
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
                    support_set=support_set,
                    subject_name=categorys[subject]["name"],
                )

                input_ids, _ = self.template.encode_oneturn(tokenizer=self.tokenizer, messages=messages)
                inputs.append({"input_ids": input_ids, "attention_mask": [1] * len(input_ids)})
                labels.append(messages[-1]["content"])

            for i in trange(
                0, len(inputs), self.eval_args.batch_size, desc="Predicting batches", position=1, leave=False
            ):
                batch_input = self.tokenizer.pad(
                    inputs[i : i + self.eval_args.batch_size], return_attention_mask=True, return_tensors="pt"
                ).to(self.model.device)
                preds = self.batch_inference(batch_input)
                outputs += preds

            corrects = np.array(outputs) == np.array(labels)
            category_name = categorys[subject]["category"]
            category_corrects[category_name] = np.concatenate([category_corrects[category_name], corrects], axis=0)
            category_corrects["Average"] = np.concatenate([category_corrects["Average"], corrects], axis=0)
            results[subject] = {str(i): outputs[i] for i in range(len(outputs))}

        pbar.close()
        self._save_results(category_corrects, results)

    def _save_results(self, category_corrects: Dict[str, np.ndarray], results: Dict[str, Dict[int, str]]) -> None:
        score_info = "\n".join(
            [
                "{:>15}: {:.2f}".format(category_name, 100 * np.mean(category_correct))
                for category_name, category_correct in category_corrects.items()
                if len(category_correct)
            ]
        )
        print(score_info)
        if self.eval_args.save_dir is not None:
            os.makedirs(self.eval_args.save_dir, exist_ok=False)
            with open(os.path.join(self.eval_args.save_dir, "results.json"), "w", encoding="utf-8", newline="\n") as f:
                json.dump(results, f, indent=2)

            with open(os.path.join(self.eval_args.save_dir, "results.log"), "w", encoding="utf-8", newline="\n") as f:
                f.write(score_info)


chenych's avatar
chenych committed
153
154
def run_eval() -> None:
    Evaluator().eval()