"docker/Dockerfile.gb200" did not exist on "8f3173d0b0721acc94a39fb654eb46a4f298958d"
trainer.py 4.99 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
#
# This code is inspired by the HuggingFace's transformers library.
# https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/trainer.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
18
19
20
21
22
23
24
25
26
import json
import os
from types import MethodType
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union

import torch
from transformers import Trainer

from ...extras.logging import get_logger
chenych's avatar
chenych committed
27
28
from ..callbacks import FixValueHeadModelCallback, PissaConvertCallback, SaveProcessorCallback
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
29
30
31


if TYPE_CHECKING:
chenych's avatar
chenych committed
32
    from transformers import PreTrainedModel, ProcessorMixin
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
33
34
35
36
37
38
39
40
41
42
43
44
45
    from transformers.trainer import PredictionOutput

    from ...hparams import FinetuningArguments


logger = get_logger(__name__)


class PairwiseTrainer(Trainer):
    r"""
    Inherits Trainer to compute pairwise loss.
    """

chenych's avatar
chenych committed
46
47
48
    def __init__(
        self, finetuning_args: "FinetuningArguments", processor: Optional["ProcessorMixin"], **kwargs
    ) -> None:
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
49
50
51
        super().__init__(**kwargs)
        self.finetuning_args = finetuning_args
        self.can_return_loss = True  # override property to return eval_loss
chenych's avatar
chenych committed
52
53
54
55
56
57
58
59
        self.add_callback(FixValueHeadModelCallback)

        if processor is not None:
            self.add_callback(SaveProcessorCallback(processor))

        if finetuning_args.pissa_convert:
            self.add_callback(PissaConvertCallback)

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
60
        if finetuning_args.use_badam:
chenych's avatar
chenych committed
61
            from badam import BAdamCallback, clip_grad_norm_old_version
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
62

chenych's avatar
chenych committed
63
64
            self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_old_version, self.accelerator)
            self.add_callback(BAdamCallback)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
65
66
67

    def create_optimizer(self) -> "torch.optim.Optimizer":
        if self.optimizer is None:
chenych's avatar
chenych committed
68
            self.optimizer = create_custom_optimizer(self.model, self.args, self.finetuning_args)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
        return super().create_optimizer()

    def create_scheduler(
        self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None
    ) -> "torch.optim.lr_scheduler.LRScheduler":
        create_custom_scheduler(self.args, num_training_steps, optimizer)
        return super().create_scheduler(num_training_steps, optimizer)

    def compute_loss(
        self, model: "PreTrainedModel", inputs: Dict[str, torch.Tensor], return_outputs: bool = False
    ) -> Union[torch.Tensor, Tuple[torch.Tensor, List[torch.Tensor]]]:
        r"""
        Computes pairwise loss. The first n examples are chosen and the last n examples are rejected.

        Subclass and override to inject custom behavior.

        Note that the first element will be removed from the output tuple.
chenych's avatar
chenych committed
86
        See: https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/trainer.py#L3842
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
87
        """
chenych's avatar
chenych committed
88
        _, _, values = model(**inputs, output_hidden_states=True, return_dict=True, use_cache=False)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
89
        batch_size = inputs["input_ids"].size(0) // 2
chenych's avatar
chenych committed
90
91
92
93
94
        chosen_masks, rejected_masks = torch.split(inputs["attention_mask"], batch_size, dim=0)
        chosen_rewards, rejected_rewards = torch.split(values, batch_size, dim=0)
        chosen_scores = chosen_rewards.gather(dim=-1, index=(chosen_masks.sum(dim=-1, keepdim=True) - 1))
        rejected_scores = rejected_rewards.gather(dim=-1, index=(rejected_masks.sum(dim=-1, keepdim=True) - 1))
        chosen_scores, rejected_scores = chosen_scores.squeeze(), rejected_scores.squeeze()
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
95

chenych's avatar
chenych committed
96
97
98
99
100
        loss = -torch.nn.functional.logsigmoid(chosen_scores.float() - rejected_scores.float()).mean()
        if return_outputs:
            return loss, (loss, chosen_scores, rejected_scores)
        else:
            return loss
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

    def save_predictions(self, predict_results: "PredictionOutput") -> None:
        r"""
        Saves model predictions to `output_dir`.

        A custom behavior that not contained in Seq2SeqTrainer.
        """
        if not self.is_world_process_zero():
            return

        output_prediction_file = os.path.join(self.args.output_dir, "generated_predictions.jsonl")
        logger.info(f"Saving prediction results to {output_prediction_file}")
        chosen_scores, rejected_scores = predict_results.predictions

        with open(output_prediction_file, "w", encoding="utf-8") as writer:
            res: List[str] = []
            for c_score, r_score in zip(chosen_scores, rejected_scores):
                res.append(json.dumps({"chosen": round(float(c_score), 2), "rejected": round(float(r_score), 2)}))
chenych's avatar
chenych committed
119

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
120
            writer.write("\n".join(res))