"INSTALL.md" did not exist on "eb52ff0093d7a7f21b81eaa492edee16d0d4b0fd"
parser.py 17.9 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
#
# This code is inspired by the HuggingFace's transformers library.
# https://github.com/huggingface/transformers/blob/v4.40.0/examples/pytorch/language-modeling/run_clm.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
18
19
20
21
22
23
24
25
import logging
import os
import sys
from typing import Any, Dict, Optional, Tuple

import torch
import transformers
from transformers import HfArgumentParser, Seq2SeqTrainingArguments
chenych's avatar
chenych committed
26
from transformers.integrations import is_deepspeed_zero3_enabled
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
27
from transformers.trainer_utils import get_last_checkpoint
chenych's avatar
chenych committed
28
from transformers.training_args import ParallelMode
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
29
30
31
from transformers.utils import is_torch_bf16_gpu_available
from transformers.utils.versions import require_version

chenych's avatar
chenych committed
32
from ..extras.constants import CHECKPOINT_NAMES
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
from ..extras.logging import get_logger
from ..extras.misc import check_dependencies, get_current_device
from .data_args import DataArguments
from .evaluation_args import EvaluationArguments
from .finetuning_args import FinetuningArguments
from .generating_args import GeneratingArguments
from .model_args import ModelArguments


logger = get_logger(__name__)


check_dependencies()


_TRAIN_ARGS = [ModelArguments, DataArguments, Seq2SeqTrainingArguments, FinetuningArguments, GeneratingArguments]
_TRAIN_CLS = Tuple[ModelArguments, DataArguments, Seq2SeqTrainingArguments, FinetuningArguments, GeneratingArguments]
_INFER_ARGS = [ModelArguments, DataArguments, FinetuningArguments, GeneratingArguments]
_INFER_CLS = Tuple[ModelArguments, DataArguments, FinetuningArguments, GeneratingArguments]
_EVAL_ARGS = [ModelArguments, DataArguments, EvaluationArguments, FinetuningArguments]
_EVAL_CLS = Tuple[ModelArguments, DataArguments, EvaluationArguments, FinetuningArguments]


def _parse_args(parser: "HfArgumentParser", args: Optional[Dict[str, Any]] = None) -> Tuple[Any]:
    if args is not None:
        return parser.parse_dict(args)

    if len(sys.argv) == 2 and sys.argv[1].endswith(".yaml"):
        return parser.parse_yaml_file(os.path.abspath(sys.argv[1]))

    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        return parser.parse_json_file(os.path.abspath(sys.argv[1]))

    (*parsed_args, unknown_args) = parser.parse_args_into_dataclasses(return_remaining_strings=True)

    if unknown_args:
        print(parser.format_help())
        print("Got unknown args, potentially deprecated arguments: {}".format(unknown_args))
        raise ValueError("Some specified arguments are not used by the HfArgumentParser: {}".format(unknown_args))

    return (*parsed_args,)


def _set_transformers_logging(log_level: Optional[int] = logging.INFO) -> None:
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()


chenych's avatar
chenych committed
82
83
84
85
86
def _verify_model_args(
    model_args: "ModelArguments",
    data_args: "DataArguments",
    finetuning_args: "FinetuningArguments",
) -> None:
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
87
88
89
90
91
92
93
    if model_args.adapter_name_or_path is not None and finetuning_args.finetuning_type != "lora":
        raise ValueError("Adapter is only valid for the LoRA method.")

    if model_args.quantization_bit is not None:
        if finetuning_args.finetuning_type != "lora":
            raise ValueError("Quantization is only compatible with the LoRA method.")

chenych's avatar
chenych committed
94
95
96
97
98
99
        if finetuning_args.pissa_init:
            raise ValueError("Please use scripts/pissa_init.py to initialize PiSSA for a quantized model.")

        if model_args.resize_vocab:
            raise ValueError("Cannot resize embedding layers of a quantized model.")

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
100
101
102
103
104
105
        if model_args.adapter_name_or_path is not None and finetuning_args.create_new_adapter:
            raise ValueError("Cannot create new adapter upon a quantized model.")

        if model_args.adapter_name_or_path is not None and len(model_args.adapter_name_or_path) != 1:
            raise ValueError("Quantized model only accepts a single adapter. Merge them first.")

chenych's avatar
chenych committed
106
107
108
109
    if data_args.template == "yi" and model_args.use_fast_tokenizer:
        logger.warning("We should use slow tokenizer for the Yi models. Change `use_fast_tokenizer` to False.")
        model_args.use_fast_tokenizer = False

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
110
111
112
113
114
115
116
117
118
119
120
121
122

def _check_extra_dependencies(
    model_args: "ModelArguments",
    finetuning_args: "FinetuningArguments",
    training_args: Optional["Seq2SeqTrainingArguments"] = None,
) -> None:
    if model_args.use_unsloth:
        require_version("unsloth", "Please install unsloth: https://github.com/unslothai/unsloth")

    if model_args.mixture_of_depths is not None:
        require_version("mixture-of-depth>=1.1.6", "To fix: pip install mixture-of-depth>=1.1.6")

    if model_args.infer_backend == "vllm":
chenych's avatar
chenych committed
123
        require_version("vllm>=0.4.3", "To fix: pip install vllm>=0.4.3")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
124
125
126
127
128

    if finetuning_args.use_galore:
        require_version("galore_torch", "To fix: pip install galore_torch")

    if finetuning_args.use_badam:
chenych's avatar
chenych committed
129
130
131
132
133
134
135
        require_version("badam>=1.2.1", "To fix: pip install badam>=1.2.1")

    if finetuning_args.use_adam_mini:
        require_version("adam-mini", "To fix: pip install adam-mini")

    if finetuning_args.plot_loss:
        require_version("matplotlib", "To fix: pip install matplotlib")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

    if training_args is not None and training_args.predict_with_generate:
        require_version("jieba", "To fix: pip install jieba")
        require_version("nltk", "To fix: pip install nltk")
        require_version("rouge_chinese", "To fix: pip install rouge-chinese")


def _parse_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
    parser = HfArgumentParser(_TRAIN_ARGS)
    return _parse_args(parser, args)


def _parse_infer_args(args: Optional[Dict[str, Any]] = None) -> _INFER_CLS:
    parser = HfArgumentParser(_INFER_ARGS)
    return _parse_args(parser, args)


def _parse_eval_args(args: Optional[Dict[str, Any]] = None) -> _EVAL_CLS:
    parser = HfArgumentParser(_EVAL_ARGS)
    return _parse_args(parser, args)


def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
    model_args, data_args, training_args, finetuning_args, generating_args = _parse_train_args(args)

    # Setup logging
    if training_args.should_log:
        _set_transformers_logging()

    # Check arguments
    if finetuning_args.stage != "pt" and data_args.template is None:
        raise ValueError("Please specify which `template` to use.")

chenych's avatar
chenych committed
169
170
171
172
173
174
175
176
177
    if finetuning_args.stage != "sft":
        if training_args.predict_with_generate:
            raise ValueError("`predict_with_generate` cannot be set as True except SFT.")

        if data_args.neat_packing:
            raise ValueError("`neat_packing` cannot be set as True except SFT.")

        if data_args.train_on_prompt or data_args.mask_history:
            raise ValueError("`train_on_prompt` or `mask_history` cannot be set as True except SFT.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
178
179
180
181
182
183
184

    if finetuning_args.stage == "sft" and training_args.do_predict and not training_args.predict_with_generate:
        raise ValueError("Please enable `predict_with_generate` to save model predictions.")

    if finetuning_args.stage in ["rm", "ppo"] and training_args.load_best_model_at_end:
        raise ValueError("RM and PPO stages do not support `load_best_model_at_end`.")

chenych's avatar
chenych committed
185
186
187
    if finetuning_args.stage == "ppo":
        if not training_args.do_train:
            raise ValueError("PPO training does not support evaluation, use the SFT stage to evaluate models.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
188

chenych's avatar
chenych committed
189
190
        if model_args.shift_attn:
            raise ValueError("PPO training is incompatible with S^2-Attn.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
191

chenych's avatar
chenych committed
192
193
        if finetuning_args.reward_model_type == "lora" and model_args.use_unsloth:
            raise ValueError("Unsloth does not support lora reward model.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
194

chenych's avatar
chenych committed
195
196
197
198
199
200
201
202
        if training_args.report_to and training_args.report_to[0] not in ["wandb", "tensorboard"]:
            raise ValueError("PPO only accepts wandb or tensorboard logger.")

    if training_args.parallel_mode == ParallelMode.NOT_DISTRIBUTED:
        raise ValueError("Please launch distributed training with `llamafactory-cli` or `torchrun`.")

    if training_args.deepspeed and training_args.parallel_mode != ParallelMode.DISTRIBUTED:
        raise ValueError("Please use `FORCE_TORCHRUN=1` to launch DeepSpeed training.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
203
204
205
206

    if training_args.max_steps == -1 and data_args.streaming:
        raise ValueError("Please specify `max_steps` in streaming mode.")

chenych's avatar
chenych committed
207
208
209
210
211
212
213
214
215
216
217
218
219
    if training_args.do_train and data_args.dataset is None:
        raise ValueError("Please specify dataset for training.")

    if (training_args.do_eval or training_args.do_predict) and (
        data_args.eval_dataset is None and data_args.val_size < 1e-6
    ):
        raise ValueError("Please specify dataset for evaluation.")

    if training_args.predict_with_generate and data_args.eval_dataset is None:
        raise ValueError("Cannot use `predict_with_generate` if `eval_dataset` is None.")

    if training_args.predict_with_generate and finetuning_args.compute_accuracy:
        raise ValueError("Cannot use `predict_with_generate` and `compute_accuracy` together.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
220
221
222
223

    if training_args.do_train and model_args.quantization_device_map == "auto":
        raise ValueError("Cannot use device map for quantized models in training.")

chenych's avatar
chenych committed
224
225
    if finetuning_args.pissa_init and is_deepspeed_zero3_enabled():
        raise ValueError("Please use scripts/pissa_init.py to initialize PiSSA in DeepSpeed ZeRO-3.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
226
227
228
229
230

    if finetuning_args.pure_bf16:
        if not is_torch_bf16_gpu_available():
            raise ValueError("This device does not support `pure_bf16`.")

chenych's avatar
chenych committed
231
232
        if is_deepspeed_zero3_enabled():
            raise ValueError("`pure_bf16` is incompatible with DeepSpeed ZeRO-3.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
233
234
235
236

    if (
        finetuning_args.use_galore
        and finetuning_args.galore_layerwise
chenych's avatar
chenych committed
237
        and training_args.parallel_mode == ParallelMode.DISTRIBUTED
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
238
239
240
    ):
        raise ValueError("Distributed training does not support layer-wise GaLore.")

chenych's avatar
chenych committed
241
242
243
244
245
    if finetuning_args.use_badam and training_args.parallel_mode == ParallelMode.DISTRIBUTED:
        if finetuning_args.badam_mode == "ratio":
            raise ValueError("Radio-based BAdam does not yet support distributed training, use layer-wise BAdam.")
        elif not is_deepspeed_zero3_enabled():
            raise ValueError("Layer-wise BAdam only supports DeepSpeed ZeRO-3 training.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
246

chenych's avatar
chenych committed
247
248
    if finetuning_args.use_galore and training_args.deepspeed is not None:
        raise ValueError("GaLore is incompatible with DeepSpeed yet.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
249
250
251
252

    if model_args.infer_backend == "vllm":
        raise ValueError("vLLM backend is only available for API, CLI and Web.")

chenych's avatar
chenych committed
253
254
255
256
257
258
259
260
261
262
263
    if model_args.visual_inputs and data_args.packing:
        raise ValueError("Cannot use packing in MLLM fine-tuning.")

    if model_args.use_unsloth and is_deepspeed_zero3_enabled():
        raise ValueError("Unsloth is incompatible with DeepSpeed ZeRO-3.")

    if data_args.neat_packing and not data_args.packing:
        logger.warning("`neat_packing` requires `packing` is True. Change `packing` to True.")
        data_args.packing = True

    _verify_model_args(model_args, data_args, finetuning_args)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
264
265
266
267
268
    _check_extra_dependencies(model_args, finetuning_args, training_args)

    if (
        training_args.do_train
        and finetuning_args.finetuning_type == "lora"
chenych's avatar
chenych committed
269
        and model_args.quantization_bit is None
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
270
271
272
        and model_args.resize_vocab
        and finetuning_args.additional_target is None
    ):
chenych's avatar
chenych committed
273
        logger.warning("Remember to add embedding layers to `additional_target` to make the added tokens trainable.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291

    if training_args.do_train and model_args.quantization_bit is not None and (not model_args.upcast_layernorm):
        logger.warning("We recommend enable `upcast_layernorm` in quantized training.")

    if training_args.do_train and (not training_args.fp16) and (not training_args.bf16):
        logger.warning("We recommend enable mixed precision training.")

    if training_args.do_train and finetuning_args.use_galore and not finetuning_args.pure_bf16:
        logger.warning("Using GaLore with mixed precision training may significantly increases GPU memory usage.")

    if (not training_args.do_train) and model_args.quantization_bit is not None:
        logger.warning("Evaluating model in 4/8-bit mode may cause lower scores.")

    if (not training_args.do_train) and finetuning_args.stage == "dpo" and finetuning_args.ref_model is None:
        logger.warning("Specify `ref_model` for computing rewards at evaluation.")

    # Post-process training arguments
    if (
chenych's avatar
chenych committed
292
        training_args.parallel_mode == ParallelMode.DISTRIBUTED
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
        and training_args.ddp_find_unused_parameters is None
        and finetuning_args.finetuning_type == "lora"
    ):
        logger.warning("`ddp_find_unused_parameters` needs to be set as False for LoRA in DDP training.")
        training_args.ddp_find_unused_parameters = False

    if finetuning_args.stage in ["rm", "ppo"] and finetuning_args.finetuning_type in ["full", "freeze"]:
        can_resume_from_checkpoint = False
        if training_args.resume_from_checkpoint is not None:
            logger.warning("Cannot resume from checkpoint in current stage.")
            training_args.resume_from_checkpoint = None
    else:
        can_resume_from_checkpoint = True

    if (
        training_args.resume_from_checkpoint is None
        and training_args.do_train
        and os.path.isdir(training_args.output_dir)
        and not training_args.overwrite_output_dir
        and can_resume_from_checkpoint
    ):
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
chenych's avatar
chenych committed
315
316
317
        if last_checkpoint is None and any(
            os.path.isfile(os.path.join(training_args.output_dir, name)) for name in CHECKPOINT_NAMES
        ):
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
318
319
320
321
            raise ValueError("Output directory already exists and is not empty. Please set `overwrite_output_dir`.")

        if last_checkpoint is not None:
            training_args.resume_from_checkpoint = last_checkpoint
chenych's avatar
chenych committed
322
323
            logger.info("Resuming training from {}.".format(training_args.resume_from_checkpoint))
            logger.info("Change `output_dir` or use `overwrite_output_dir` to avoid.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

    if (
        finetuning_args.stage in ["rm", "ppo"]
        and finetuning_args.finetuning_type == "lora"
        and training_args.resume_from_checkpoint is not None
    ):
        logger.warning(
            "Add {} to `adapter_name_or_path` to resume training from checkpoint.".format(
                training_args.resume_from_checkpoint
            )
        )

    # Post-process model arguments
    if training_args.bf16 or finetuning_args.pure_bf16:
        model_args.compute_dtype = torch.bfloat16
    elif training_args.fp16:
        model_args.compute_dtype = torch.float16

    model_args.device_map = {"": get_current_device()}
    model_args.model_max_length = data_args.cutoff_len
chenych's avatar
chenych committed
344
    model_args.block_diag_attn = data_args.neat_packing
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
345
346
    data_args.packing = data_args.packing if data_args.packing is not None else finetuning_args.stage == "pt"

chenych's avatar
chenych committed
347
    # Log on each process the small summary
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
348
349
350
351
352
    logger.info(
        "Process rank: {}, device: {}, n_gpu: {}, distributed training: {}, compute dtype: {}".format(
            training_args.local_rank,
            training_args.device,
            training_args.n_gpu,
chenych's avatar
chenych committed
353
            training_args.parallel_mode == ParallelMode.DISTRIBUTED,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
            str(model_args.compute_dtype),
        )
    )

    transformers.set_seed(training_args.seed)

    return model_args, data_args, training_args, finetuning_args, generating_args


def get_infer_args(args: Optional[Dict[str, Any]] = None) -> _INFER_CLS:
    model_args, data_args, finetuning_args, generating_args = _parse_infer_args(args)

    _set_transformers_logging()

    if data_args.template is None:
        raise ValueError("Please specify which `template` to use.")

    if model_args.infer_backend == "vllm":
        if finetuning_args.stage != "sft":
            raise ValueError("vLLM engine only supports auto-regressive models.")

        if model_args.quantization_bit is not None:
chenych's avatar
chenych committed
376
            raise ValueError("vLLM engine does not support bnb quantization (GPTQ and AWQ are supported).")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
377
378
379
380

        if model_args.rope_scaling is not None:
            raise ValueError("vLLM engine does not support RoPE scaling.")

chenych's avatar
chenych committed
381
382
383
384
385
386
387
        if model_args.adapter_name_or_path is not None and len(model_args.adapter_name_or_path) != 1:
            raise ValueError("vLLM only accepts a single adapter. Merge them first.")

    if finetuning_args.stage == "rm" and model_args.visual_inputs:
        raise ValueError("Reward server does not support MLLM yet. Stay tuned.")

    _verify_model_args(model_args, data_args, finetuning_args)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
388
389
    _check_extra_dependencies(model_args, finetuning_args)

chenych's avatar
chenych committed
390
391
392
    if model_args.export_dir is not None and model_args.export_device == "cpu":
        model_args.device_map = {"": torch.device("cpu")}
        model_args.model_max_length = data_args.cutoff_len
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
    else:
        model_args.device_map = "auto"

    return model_args, data_args, finetuning_args, generating_args


def get_eval_args(args: Optional[Dict[str, Any]] = None) -> _EVAL_CLS:
    model_args, data_args, eval_args, finetuning_args = _parse_eval_args(args)

    _set_transformers_logging()

    if data_args.template is None:
        raise ValueError("Please specify which `template` to use.")

    if model_args.infer_backend == "vllm":
        raise ValueError("vLLM backend is only available for API, CLI and Web.")

chenych's avatar
chenych committed
410
    _verify_model_args(model_args, data_args, finetuning_args)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
411
412
413
414
415
416
417
    _check_extra_dependencies(model_args, finetuning_args)

    model_args.device_map = "auto"

    transformers.set_seed(eval_args.seed)

    return model_args, data_args, eval_args, finetuning_args