model_args.py 10.2 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
#
# This code is inspired by the HuggingFace's transformers library.
# https://github.com/huggingface/transformers/blob/v4.40.0/examples/pytorch/language-modeling/run_clm.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
18
from dataclasses import asdict, dataclass, field
chenych's avatar
chenych committed
19
20
21
22
23
24
25
from typing import TYPE_CHECKING, Any, Dict, Literal, Optional, Union

from typing_extensions import Self


if TYPE_CHECKING:
    import torch
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40


@dataclass
class ModelArguments:
    r"""
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune or infer.
    """

    model_name_or_path: str = field(
        metadata={
            "help": "Path to the model weight or identifier from huggingface.co/models or modelscope.cn/models."
        },
    )
    adapter_name_or_path: Optional[str] = field(
        default=None,
chenych's avatar
chenych committed
41
42
43
44
45
46
47
48
49
50
        metadata={
            "help": (
                "Path to the adapter weight or identifier from huggingface.co/models. "
                "Use commas to separate multiple adapters."
            )
        },
    )
    adapter_folder: Optional[str] = field(
        default=None,
        metadata={"help": "The folder containing the adapter weights to load."},
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
51
52
53
54
55
56
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Where to store the pre-trained models downloaded from huggingface.co or modelscope.cn."},
    )
    use_fast_tokenizer: bool = field(
chenych's avatar
chenych committed
57
        default=True,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
58
59
60
61
62
63
64
65
66
67
        metadata={"help": "Whether or not to use one of the fast tokenizer (backed by the tokenizers library)."},
    )
    resize_vocab: bool = field(
        default=False,
        metadata={"help": "Whether or not to resize the tokenizer vocab and the embedding layers."},
    )
    split_special_tokens: bool = field(
        default=False,
        metadata={"help": "Whether or not the special tokens should be split during the tokenization process."},
    )
chenych's avatar
chenych committed
68
69
70
71
    new_special_tokens: Optional[str] = field(
        default=None,
        metadata={"help": "Special tokens to be added into the tokenizer. Use commas to separate multiple tokens."},
    )
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
72
73
74
75
76
77
78
79
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    low_cpu_mem_usage: bool = field(
        default=True,
        metadata={"help": "Whether or not to use memory-efficient model loading."},
    )
chenych's avatar
chenych committed
80
81
82
83
    quantization_method: Literal["bitsandbytes", "hqq", "eetq"] = field(
        default="bitsandbytes",
        metadata={"help": "Quantization method to use for on-the-fly quantization."},
    )
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
    quantization_bit: Optional[int] = field(
        default=None,
        metadata={"help": "The number of bits to quantize the model using bitsandbytes."},
    )
    quantization_type: Literal["fp4", "nf4"] = field(
        default="nf4",
        metadata={"help": "Quantization data type to use in int4 training."},
    )
    double_quantization: bool = field(
        default=True,
        metadata={"help": "Whether or not to use double quantization in int4 training."},
    )
    quantization_device_map: Optional[Literal["auto"]] = field(
        default=None,
        metadata={"help": "Device map used to infer the 4-bit quantized model, needs bitsandbytes>=0.43.0."},
    )
    rope_scaling: Optional[Literal["linear", "dynamic"]] = field(
        default=None,
        metadata={"help": "Which scaling strategy should be adopted for the RoPE embeddings."},
    )
chenych's avatar
chenych committed
104
105
106
    flash_attn: Literal["auto", "disabled", "sdpa", "fa2"] = field(
        default="auto",
        metadata={"help": "Enable FlashAttention for faster training and inference."},
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
107
108
109
110
111
112
113
114
115
116
117
118
119
    )
    shift_attn: bool = field(
        default=False,
        metadata={"help": "Enable shift short attention (S^2-Attn) proposed by LongLoRA."},
    )
    mixture_of_depths: Optional[Literal["convert", "load"]] = field(
        default=None,
        metadata={"help": "Convert the model to mixture-of-depths (MoD) or load the MoD model."},
    )
    use_unsloth: bool = field(
        default=False,
        metadata={"help": "Whether or not to use unsloth's optimization for the LoRA training."},
    )
chenych's avatar
chenych committed
120
121
122
123
    visual_inputs: bool = field(
        default=False,
        metadata={"help": "Whethor or not to use multimodal LLM that accepts visual inputs."},
    )
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
    moe_aux_loss_coef: Optional[float] = field(
        default=None,
        metadata={"help": "Coefficient of the auxiliary router loss in mixture-of-experts model."},
    )
    disable_gradient_checkpointing: bool = field(
        default=False,
        metadata={"help": "Whether or not to disable gradient checkpointing."},
    )
    upcast_layernorm: bool = field(
        default=False,
        metadata={"help": "Whether or not to upcast the layernorm weights in fp32."},
    )
    upcast_lmhead_output: bool = field(
        default=False,
        metadata={"help": "Whether or not to upcast the output of lm_head in fp32."},
    )
chenych's avatar
chenych committed
140
141
142
143
    train_from_scratch: bool = field(
        default=False,
        metadata={"help": "Whether or not to randomly initialize the model weights."},
    )
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
144
145
146
147
148
149
    infer_backend: Literal["huggingface", "vllm"] = field(
        default="huggingface",
        metadata={"help": "Backend engine used at inference."},
    )
    vllm_maxlen: int = field(
        default=2048,
chenych's avatar
chenych committed
150
        metadata={"help": "Maximum sequence (prompt + response) length of the vLLM engine."},
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
151
152
153
154
155
156
157
158
159
    )
    vllm_gpu_util: float = field(
        default=0.9,
        metadata={"help": "The fraction of GPU memory in (0,1) to be used for the vLLM engine."},
    )
    vllm_enforce_eager: bool = field(
        default=False,
        metadata={"help": "Whether or not to disable CUDA graph in the vLLM engine."},
    )
chenych's avatar
chenych committed
160
161
162
163
    vllm_max_lora_rank: int = field(
        default=32,
        metadata={"help": "Maximum rank of all LoRAs in the vLLM engine."},
    )
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
164
165
166
167
168
169
170
171
    offload_folder: str = field(
        default="offload",
        metadata={"help": "Path to offload model weights."},
    )
    use_cache: bool = field(
        default=True,
        metadata={"help": "Whether or not to use KV cache in generation."},
    )
chenych's avatar
chenych committed
172
173
174
175
    infer_dtype: Literal["auto", "float16", "bfloat16", "float32"] = field(
        default="auto",
        metadata={"help": "Data type for model weights and activations at inference."},
    )
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
    hf_hub_token: Optional[str] = field(
        default=None,
        metadata={"help": "Auth token to log in with Hugging Face Hub."},
    )
    ms_hub_token: Optional[str] = field(
        default=None,
        metadata={"help": "Auth token to log in with ModelScope Hub."},
    )
    export_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Path to the directory to save the exported model."},
    )
    export_size: int = field(
        default=1,
        metadata={"help": "The file shard size (in GB) of the exported model."},
    )
chenych's avatar
chenych committed
192
    export_device: Literal["cpu", "auto"] = field(
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
193
        default="cpu",
chenych's avatar
chenych committed
194
        metadata={"help": "The device used in model export, use `auto` to accelerate exporting."},
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
    )
    export_quantization_bit: Optional[int] = field(
        default=None,
        metadata={"help": "The number of bits to quantize the exported model."},
    )
    export_quantization_dataset: Optional[str] = field(
        default=None,
        metadata={"help": "Path to the dataset or dataset name to use in quantizing the exported model."},
    )
    export_quantization_nsamples: int = field(
        default=128,
        metadata={"help": "The number of samples used for quantization."},
    )
    export_quantization_maxlen: int = field(
        default=1024,
        metadata={"help": "The maximum length of the model inputs used for quantization."},
    )
    export_legacy_format: bool = field(
        default=False,
        metadata={"help": "Whether or not to save the `.bin` files instead of `.safetensors`."},
    )
    export_hub_model_id: Optional[str] = field(
        default=None,
        metadata={"help": "The name of the repository if push the model to the Hugging Face hub."},
    )
    print_param_status: bool = field(
        default=False,
        metadata={"help": "For debugging purposes, print the status of the parameters in the model."},
    )

    def __post_init__(self):
chenych's avatar
chenych committed
226
227
228
229
        self.compute_dtype: Optional["torch.dtype"] = None
        self.device_map: Optional[Union[str, Dict[str, Any]]] = None
        self.model_max_length: Optional[int] = None
        self.block_diag_attn: bool = False
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
230
231
232
233

        if self.split_special_tokens and self.use_fast_tokenizer:
            raise ValueError("`split_special_tokens` is only supported for slow tokenizers.")

chenych's avatar
chenych committed
234
235
236
        if self.visual_inputs and self.use_unsloth:
            raise ValueError("Unsloth does not support MLLM yet. Stay tuned.")

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
237
238
239
        if self.adapter_name_or_path is not None:  # support merging multiple lora weights
            self.adapter_name_or_path = [path.strip() for path in self.adapter_name_or_path.split(",")]

chenych's avatar
chenych committed
240
241
        if self.new_special_tokens is not None:  # support multiple special tokens
            self.new_special_tokens = [token.strip() for token in self.new_special_tokens.split(",")]
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
242
243
244
245
246
247

        if self.export_quantization_bit is not None and self.export_quantization_dataset is None:
            raise ValueError("Quantization dataset is necessary for exporting.")

    def to_dict(self) -> Dict[str, Any]:
        return asdict(self)
chenych's avatar
chenych committed
248
249
250
251
252
253
254
255
256
257
258

    @classmethod
    def copyfrom(cls, old_arg: Self, **kwargs) -> Self:
        arg_dict = old_arg.to_dict()
        arg_dict.update(**kwargs)
        new_arg = cls(**arg_dict)
        new_arg.compute_dtype = old_arg.compute_dtype
        new_arg.device_map = old_arg.device_map
        new_arg.model_max_length = old_arg.model_max_length
        new_arg.block_diag_attn = old_arg.block_diag_attn
        return new_arg