test_sft_trainer.py 3.1 KB
Newer Older
chenych's avatar
chenych committed
1
# Copyright 2025 the LlamaFactory team.
luopl's avatar
luopl committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
from dataclasses import dataclass, field
chenych's avatar
chenych committed
17
from typing import Any
luopl's avatar
luopl committed
18
19
20
21
22
23
24
25
26
27
28
29

import pytest
from transformers import DataCollatorWithPadding

from llamafactory.data import get_dataset, get_template_and_fix_tokenizer
from llamafactory.hparams import get_train_args
from llamafactory.model import load_model, load_tokenizer
from llamafactory.train.sft.trainer import CustomSeq2SeqTrainer


DEMO_DATA = os.getenv("DEMO_DATA", "llamafactory/demo_data")

chenych's avatar
chenych committed
30
TINY_LLAMA3 = os.getenv("TINY_LLAMA3", "llamafactory/tiny-random-Llama-3")
luopl's avatar
luopl committed
31
32

TRAIN_ARGS = {
chenych's avatar
chenych committed
33
    "model_name_or_path": TINY_LLAMA3,
luopl's avatar
luopl committed
34
35
36
37
38
39
40
41
42
43
    "stage": "sft",
    "do_train": True,
    "finetuning_type": "lora",
    "dataset": "llamafactory/tiny-supervised-dataset",
    "dataset_dir": "ONLINE",
    "template": "llama3",
    "cutoff_len": 1024,
    "overwrite_output_dir": True,
    "per_device_train_batch_size": 1,
    "max_steps": 1,
chenych's avatar
chenych committed
44
    "report_to": "none",
luopl's avatar
luopl committed
45
46
47
48
49
}


@dataclass
class DataCollatorWithVerbose(DataCollatorWithPadding):
chenych's avatar
chenych committed
50
    verbose_list: list[dict[str, Any]] = field(default_factory=list)
luopl's avatar
luopl committed
51

chenych's avatar
chenych committed
52
    def __call__(self, features: list[dict[str, Any]]) -> dict[str, Any]:
luopl's avatar
luopl committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
        self.verbose_list.extend(features)
        batch = super().__call__(features)
        return {k: v[:, :1] for k, v in batch.items()}  # truncate input length


@pytest.mark.parametrize("disable_shuffling", [False, True])
def test_shuffle(disable_shuffling: bool):
    model_args, data_args, training_args, finetuning_args, _ = get_train_args(
        {
            "output_dir": os.path.join("output", f"shuffle{str(disable_shuffling).lower()}"),
            "disable_shuffling": disable_shuffling,
            **TRAIN_ARGS,
        }
    )
    tokenizer_module = load_tokenizer(model_args)
    tokenizer = tokenizer_module["tokenizer"]
    template = get_template_and_fix_tokenizer(tokenizer, data_args)
    dataset_module = get_dataset(template, model_args, data_args, training_args, stage="sft", **tokenizer_module)
    model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)
    data_collator = DataCollatorWithVerbose(tokenizer=tokenizer)
    trainer = CustomSeq2SeqTrainer(
        model=model,
        args=training_args,
        finetuning_args=finetuning_args,
        data_collator=data_collator,
        **dataset_module,
        **tokenizer_module,
    )
    trainer.train()
    if disable_shuffling:
        assert data_collator.verbose_list[0]["input_ids"] == dataset_module["train_dataset"][0]["input_ids"]
    else:
        assert data_collator.verbose_list[0]["input_ids"] != dataset_module["train_dataset"][0]["input_ids"]