test_lora.py 3.73 KB
Newer Older
chenych's avatar
chenych committed
1
# Copyright 2025 the LlamaFactory team.
chenych's avatar
chenych committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os

import pytest
import torch

from llamafactory.train.test_utils import (
    check_lora_model,
    compare_model,
    load_infer_model,
    load_reference_model,
    load_train_model,
    patch_valuehead_model,
)


chenych's avatar
chenych committed
30
TINY_LLAMA3 = os.getenv("TINY_LLAMA3", "llamafactory/tiny-random-Llama-3")
chenych's avatar
chenych committed
31

luopl's avatar
luopl committed
32
TINY_LLAMA_ADAPTER = os.getenv("TINY_LLAMA_ADAPTER", "llamafactory/tiny-random-Llama-3-lora")
chenych's avatar
chenych committed
33

luopl's avatar
luopl committed
34
TINY_LLAMA_VALUEHEAD = os.getenv("TINY_LLAMA_VALUEHEAD", "llamafactory/tiny-random-Llama-3-valuehead")
chenych's avatar
chenych committed
35
36

TRAIN_ARGS = {
chenych's avatar
chenych committed
37
    "model_name_or_path": TINY_LLAMA3,
chenych's avatar
chenych committed
38
39
40
41
42
43
44
45
46
47
48
49
50
    "stage": "sft",
    "do_train": True,
    "finetuning_type": "lora",
    "dataset": "llamafactory/tiny-supervised-dataset",
    "dataset_dir": "ONLINE",
    "template": "llama3",
    "cutoff_len": 1024,
    "output_dir": "dummy_dir",
    "overwrite_output_dir": True,
    "fp16": True,
}

INFER_ARGS = {
chenych's avatar
chenych committed
51
    "model_name_or_path": TINY_LLAMA3,
chenych's avatar
chenych committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
    "adapter_name_or_path": TINY_LLAMA_ADAPTER,
    "finetuning_type": "lora",
    "template": "llama3",
    "infer_dtype": "float16",
}


@pytest.fixture
def fix_valuehead_cpu_loading():
    patch_valuehead_model()


def test_lora_train_qv_modules():
    model = load_train_model(lora_target="q_proj,v_proj", **TRAIN_ARGS)
    linear_modules, _ = check_lora_model(model)
    assert linear_modules == {"q_proj", "v_proj"}


def test_lora_train_all_modules():
    model = load_train_model(lora_target="all", **TRAIN_ARGS)
    linear_modules, _ = check_lora_model(model)
    assert linear_modules == {"q_proj", "k_proj", "v_proj", "o_proj", "up_proj", "gate_proj", "down_proj"}


def test_lora_train_extra_modules():
    model = load_train_model(additional_target="embed_tokens,lm_head", **TRAIN_ARGS)
    _, extra_modules = check_lora_model(model)
    assert extra_modules == {"embed_tokens", "lm_head"}


def test_lora_train_old_adapters():
    model = load_train_model(adapter_name_or_path=TINY_LLAMA_ADAPTER, create_new_adapter=False, **TRAIN_ARGS)
chenych's avatar
chenych committed
84
    ref_model = load_reference_model(TINY_LLAMA3, TINY_LLAMA_ADAPTER, use_lora=True, is_trainable=True)
chenych's avatar
chenych committed
85
86
87
88
89
    compare_model(model, ref_model)


def test_lora_train_new_adapters():
    model = load_train_model(adapter_name_or_path=TINY_LLAMA_ADAPTER, create_new_adapter=True, **TRAIN_ARGS)
chenych's avatar
chenych committed
90
    ref_model = load_reference_model(TINY_LLAMA3, TINY_LLAMA_ADAPTER, use_lora=True, is_trainable=True)
chenych's avatar
chenych committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
    compare_model(
        model, ref_model, diff_keys=["q_proj", "k_proj", "v_proj", "o_proj", "up_proj", "gate_proj", "down_proj"]
    )


@pytest.mark.usefixtures("fix_valuehead_cpu_loading")
def test_lora_train_valuehead():
    model = load_train_model(add_valuehead=True, **TRAIN_ARGS)
    ref_model = load_reference_model(TINY_LLAMA_VALUEHEAD, is_trainable=True, add_valuehead=True)
    state_dict = model.state_dict()
    ref_state_dict = ref_model.state_dict()
    assert torch.allclose(state_dict["v_head.summary.weight"], ref_state_dict["v_head.summary.weight"])
    assert torch.allclose(state_dict["v_head.summary.bias"], ref_state_dict["v_head.summary.bias"])


def test_lora_inference():
    model = load_infer_model(**INFER_ARGS)
chenych's avatar
chenych committed
108
    ref_model = load_reference_model(TINY_LLAMA3, TINY_LLAMA_ADAPTER, use_lora=True).merge_and_unload()
chenych's avatar
chenych committed
109
    compare_model(model, ref_model)