test_freeze.py 2.34 KB
Newer Older
chenych's avatar
chenych committed
1
# Copyright 2025 the LlamaFactory team.
chenych's avatar
chenych committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os

import torch

from llamafactory.train.test_utils import load_infer_model, load_train_model


chenych's avatar
chenych committed
22
TINY_LLAMA3 = os.getenv("TINY_LLAMA3", "llamafactory/tiny-random-Llama-3")
chenych's avatar
chenych committed
23
24

TRAIN_ARGS = {
chenych's avatar
chenych committed
25
    "model_name_or_path": TINY_LLAMA3,
chenych's avatar
chenych committed
26
27
28
29
30
31
32
33
34
35
36
37
38
    "stage": "sft",
    "do_train": True,
    "finetuning_type": "freeze",
    "dataset": "llamafactory/tiny-supervised-dataset",
    "dataset_dir": "ONLINE",
    "template": "llama3",
    "cutoff_len": 1024,
    "output_dir": "dummy_dir",
    "overwrite_output_dir": True,
    "fp16": True,
}

INFER_ARGS = {
chenych's avatar
chenych committed
39
    "model_name_or_path": TINY_LLAMA3,
chenych's avatar
chenych committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
    "finetuning_type": "freeze",
    "template": "llama3",
    "infer_dtype": "float16",
}


def test_freeze_train_all_modules():
    model = load_train_model(freeze_trainable_layers=1, **TRAIN_ARGS)
    for name, param in model.named_parameters():
        if name.startswith("model.layers.1."):
            assert param.requires_grad is True
            assert param.dtype == torch.float32
        else:
            assert param.requires_grad is False
            assert param.dtype == torch.float16


def test_freeze_train_extra_modules():
    model = load_train_model(freeze_trainable_layers=1, freeze_extra_modules="embed_tokens,lm_head", **TRAIN_ARGS)
    for name, param in model.named_parameters():
        if name.startswith("model.layers.1.") or any(module in name for module in ["embed_tokens", "lm_head"]):
            assert param.requires_grad is True
            assert param.dtype == torch.float32
        else:
            assert param.requires_grad is False
            assert param.dtype == torch.float16


def test_freeze_inference():
    model = load_infer_model(**INFER_ARGS)
    for param in model.parameters():
        assert param.requires_grad is False
        assert param.dtype == torch.float16