test_collator.py 4.94 KB
Newer Older
chenych's avatar
chenych committed
1
# Copyright 2025 the LlamaFactory team.
chenych's avatar
chenych committed
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

luopl's avatar
luopl committed
15
16
import os

chenych's avatar
chenych committed
17
import torch
luopl's avatar
luopl committed
18
19
20
21
22
23
24
25
26
from PIL import Image

from llamafactory.data import get_template_and_fix_tokenizer
from llamafactory.data.collator import MultiModalDataCollatorForSeq2Seq, prepare_4d_attention_mask
from llamafactory.extras.constants import IGNORE_INDEX
from llamafactory.hparams import get_infer_args
from llamafactory.model import load_tokenizer


chenych's avatar
chenych committed
27
TINY_LLAMA3 = os.getenv("TINY_LLAMA3", "llamafactory/tiny-random-Llama-3")
luopl's avatar
luopl committed
28
29
30


def test_base_collator():
chenych's avatar
chenych committed
31
    model_args, data_args, *_ = get_infer_args({"model_name_or_path": TINY_LLAMA3, "template": "default"})
luopl's avatar
luopl committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
    tokenizer_module = load_tokenizer(model_args)
    template = get_template_and_fix_tokenizer(tokenizer_module["tokenizer"], data_args)
    data_collator = MultiModalDataCollatorForSeq2Seq(
        template=template,
        pad_to_multiple_of=8,
        label_pad_token_id=IGNORE_INDEX,
        **tokenizer_module,
    )
    p = tokenizer_module["tokenizer"].pad_token_id
    q = IGNORE_INDEX
    features = [
        {
            "input_ids": [0, 1, 2, 3, 4, 5],
            "attention_mask": [1, 1, 1, 1, 1, 1],
            "labels": [q, q, 2, 3, 4, 5],
        },
        {
            "input_ids": [6, 7],
            "attention_mask": [1, 1],
            "labels": [q, 7],
        },
    ]
    batch_input = data_collator(features)
    expected_input = {
        "input_ids": [
            [0, 1, 2, 3, 4, 5, p, p],
            [6, 7, p, p, p, p, p, p],
        ],
        "attention_mask": [
            [1, 1, 1, 1, 1, 1, 0, 0],
            [1, 1, 0, 0, 0, 0, 0, 0],
        ],
        "labels": [
            [q, q, 2, 3, 4, 5, q, q],
            [q, 7, q, q, q, q, q, q],
        ],
    }
    for k in batch_input.keys():
        assert batch_input[k].eq(torch.tensor(expected_input[k])).all()


def test_multimodal_collator():
    model_args, data_args, *_ = get_infer_args(
        {"model_name_or_path": "Qwen/Qwen2-VL-7B-Instruct", "template": "qwen2_vl"}
    )
    tokenizer_module = load_tokenizer(model_args)
    template = get_template_and_fix_tokenizer(tokenizer_module["tokenizer"], data_args)
    data_collator = MultiModalDataCollatorForSeq2Seq(
        template=template,
        pad_to_multiple_of=4,
        label_pad_token_id=IGNORE_INDEX,
        **tokenizer_module,
    )
    p = tokenizer_module["tokenizer"].pad_token_id
    q = IGNORE_INDEX
    s = tokenizer_module["tokenizer"].convert_tokens_to_ids("<|vision_start|>")
    e = tokenizer_module["tokenizer"].convert_tokens_to_ids("<|vision_end|>")
    m = tokenizer_module["tokenizer"].convert_tokens_to_ids("<|image_pad|>")
    fake_image = Image.new("RGB", (64, 64), (255, 255, 255))
chenych's avatar
chenych committed
91

luopl's avatar
luopl committed
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
    features = [
        {
            "input_ids": [0, 1, 2, 3],
            "attention_mask": [1, 1, 1, 1],
            "labels": [0, 1, 2, 3],
        },
    ]
    batch_input = data_collator(features)
    expected_input = {
        "input_ids": [
            [0, 1, 2, 3, s, m, m, m, m, e, p, p],
        ],
        "attention_mask": [
            [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],
        ],
        "labels": [
            [0, 1, 2, 3, q, q, q, q, q, q, q, q],
        ],
        **tokenizer_module["processor"].image_processor(fake_image),
    }
    for k in batch_input.keys():
        assert batch_input[k].eq(torch.tensor(expected_input[k])).all()
chenych's avatar
chenych committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152


def test_4d_attention_mask():
    o = 0.0
    x = torch.finfo(torch.float16).min
    attention_mask_with_indices = torch.tensor(
        [
            [1, 1, 2, 2, 2, 0],
            [1, 2, 2, 3, 3, 3],
        ]
    )
    attention_mask_computed = prepare_4d_attention_mask(attention_mask_with_indices, torch.float16)
    attention_mask_expected = torch.tensor(
        [
            [
                [
                    [o, x, x, x, x, x],
                    [o, o, x, x, x, x],
                    [x, x, o, x, x, x],
                    [x, x, o, o, x, x],
                    [x, x, o, o, o, x],
                    [x, x, x, x, x, x],
                ]
            ],
            [
                [
                    [o, x, x, x, x, x],
                    [x, o, x, x, x, x],
                    [x, o, o, x, x, x],
                    [x, x, x, o, x, x],
                    [x, x, x, o, o, x],
                    [x, x, x, o, o, o],
                ]
            ],
        ],
        dtype=torch.float16,
    )
    assert list(attention_mask_computed.size()) == [2, 1, 6, 6]
    assert torch.all(attention_mask_computed == attention_mask_expected)