workflow.py 4.41 KB
Newer Older
chenych's avatar
chenych committed
1
# Copyright 2025 HuggingFace Inc. and the LlamaFactory team.
chenych's avatar
chenych committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#
# This code is inspired by the HuggingFace's TRL library.
# https://github.com/huggingface/trl/blob/v0.8.0/examples/scripts/dpo.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
17

chenych's avatar
chenych committed
18
from typing import TYPE_CHECKING, Optional
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
19

luopl's avatar
luopl committed
20
from ...data import PairwiseDataCollatorWithPadding, get_dataset, get_template_and_fix_tokenizer
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
21
from ...extras.constants import IGNORE_INDEX
luopl's avatar
luopl committed
22
from ...extras.misc import calculate_tps
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
23
24
25
from ...extras.ploting import plot_loss
from ...hparams import ModelArguments
from ...model import load_model, load_tokenizer
chenych's avatar
chenych committed
26
from ..trainer_utils import create_modelcard_and_push, create_ref_model
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
from .trainer import CustomDPOTrainer


if TYPE_CHECKING:
    from transformers import Seq2SeqTrainingArguments, TrainerCallback

    from ...hparams import DataArguments, FinetuningArguments


def run_dpo(
    model_args: "ModelArguments",
    data_args: "DataArguments",
    training_args: "Seq2SeqTrainingArguments",
    finetuning_args: "FinetuningArguments",
chenych's avatar
chenych committed
41
    callbacks: Optional[list["TrainerCallback"]] = None,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
42
):
chenych's avatar
chenych committed
43
44
    tokenizer_module = load_tokenizer(model_args)
    tokenizer = tokenizer_module["tokenizer"]
luopl's avatar
luopl committed
45
46
    template = get_template_and_fix_tokenizer(tokenizer, data_args)
    dataset_module = get_dataset(template, model_args, data_args, training_args, stage="rm", **tokenizer_module)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
47
48
49
    model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)

    data_collator = PairwiseDataCollatorWithPadding(
luopl's avatar
luopl committed
50
        template=template,
luopl's avatar
luopl committed
51
        model=model,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
52
53
        pad_to_multiple_of=8,
        label_pad_token_id=IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id,
luopl's avatar
luopl committed
54
        **tokenizer_module,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
55
56
57
    )

    # Create reference model
chenych's avatar
chenych committed
58
59
60
61
62
    if finetuning_args.use_ref_model:
        if finetuning_args.ref_model is None and (not training_args.do_train):  # use the model itself
            ref_model = model
        else:
            ref_model = create_ref_model(model_args, finetuning_args)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
63
    else:
chenych's avatar
chenych committed
64
        ref_model = None
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
65
66

    # Update arguments
luopl's avatar
luopl committed
67
    training_args.remove_unused_columns = False  # important for multimodal and pairwise dataset
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
68
69
70
71
72
73
74
75
76

    # Initialize our Trainer
    trainer = CustomDPOTrainer(
        model=model,
        ref_model=ref_model,
        args=training_args,
        finetuning_args=finetuning_args,
        data_collator=data_collator,
        callbacks=callbacks,
chenych's avatar
chenych committed
77
78
        **dataset_module,
        **tokenizer_module,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
79
80
81
82
83
    )

    # Training
    if training_args.do_train:
        train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
luopl's avatar
luopl committed
84
        trainer.save_model()
luopl's avatar
luopl committed
85
        if finetuning_args.include_effective_tokens_per_second:
luopl's avatar
luopl committed
86
87
            train_result.metrics["effective_tokens_per_sec"] = calculate_tps(
                dataset_module["train_dataset"], train_result.metrics, stage="rm"
luopl's avatar
luopl committed
88
89
            )

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
90
91
92
93
        trainer.log_metrics("train", train_result.metrics)
        trainer.save_metrics("train", train_result.metrics)
        trainer.save_state()
        if trainer.is_world_process_zero() and finetuning_args.plot_loss:
chenych's avatar
chenych committed
94
95
96
97
98
99
100
            keys = ["loss", "rewards/accuracies"]
            if isinstance(dataset_module.get("eval_dataset"), dict):
                keys += [f"eval_{key}_loss" for key in dataset_module["eval_dataset"].keys()]
            else:
                keys += ["eval_loss"]

            plot_loss(training_args.output_dir, keys=keys)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
101
102
103
104

    # Evaluation
    if training_args.do_eval:
        metrics = trainer.evaluate(metric_key_prefix="eval")
chenych's avatar
chenych committed
105
        if id(model) == id(ref_model):  # unable to compute rewards if reference model is the model itself
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
106
107
108
109
110
111
112
113
            remove_keys = [key for key in metrics.keys() if "rewards" in key]
            for key in remove_keys:
                metrics.pop(key)
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    # Create model card
    create_modelcard_and_push(trainer, model_args, data_args, training_args, finetuning_args)