misc.py 10 KB
Newer Older
chenych's avatar
chenych committed
1
# Copyright 2025 HuggingFace Inc. and the LlamaFactory team.
chenych's avatar
chenych committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# This code is inspired by the HuggingFace's PEFT library.
# https://github.com/huggingface/peft/blob/v0.10.0/src/peft/peft_model.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
18
19
import gc
import os
chenych's avatar
chenych committed
20
21
import socket
from typing import TYPE_CHECKING, Any, Literal, Union
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
22
23

import torch
luopl's avatar
luopl committed
24
import torch.distributed as dist
chenych's avatar
chenych committed
25
26
27
import transformers.dynamic_module_utils
from transformers import InfNanRemoveLogitsProcessor, LogitsProcessorList
from transformers.dynamic_module_utils import get_relative_imports
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
28
29
30
31
32
33
34
35
36
from transformers.utils import (
    is_torch_bf16_gpu_available,
    is_torch_cuda_available,
    is_torch_mps_available,
    is_torch_npu_available,
    is_torch_xpu_available,
)
from transformers.utils.versions import require_version

luopl's avatar
luopl committed
37
from . import logging
chenych's avatar
chenych committed
38
from .packages import is_transformers_version_greater_than
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
39
40
41
42


_is_fp16_available = is_torch_npu_available() or is_torch_cuda_available()
try:
chenych's avatar
chenych committed
43
    _is_bf16_available = is_torch_bf16_gpu_available() or (is_torch_npu_available() and torch.npu.is_bf16_supported())
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
44
45
46
47
48
except Exception:
    _is_bf16_available = False


if TYPE_CHECKING:
chenych's avatar
chenych committed
49
    from numpy.typing import NDArray
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
50

chenych's avatar
chenych committed
51
    from ..hparams import ModelArguments
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
52
53


luopl's avatar
luopl committed
54
logger = logging.get_logger(__name__)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
55
56
57


class AverageMeter:
chenych's avatar
chenych committed
58
    r"""Compute and store the average and current value."""
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

    def __init__(self):
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count


luopl's avatar
luopl committed
76
def check_version(requirement: str, mandatory: bool = False) -> None:
chenych's avatar
chenych committed
77
    r"""Optionally check the package version."""
chenych's avatar
chenych committed
78
    if is_env_enabled("DISABLE_VERSION_CHECK") and not mandatory:
luopl's avatar
luopl committed
79
80
81
82
83
84
85
86
87
88
89
        logger.warning_rank0_once("Version checking has been disabled, may lead to unexpected behaviors.")
        return

    if mandatory:
        hint = f"To fix: run `pip install {requirement}`."
    else:
        hint = f"To fix: run `pip install {requirement}` or set `DISABLE_VERSION_CHECK=1` to skip this check."

    require_version(requirement, hint)


Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
90
def check_dependencies() -> None:
chenych's avatar
chenych committed
91
    r"""Check the version of the required packages."""
chenych's avatar
chenych committed
92
93
94
95
    check_version("transformers>=4.41.2,<=4.51.3,!=4.46.0,!=4.46.1,!=4.46.2,!=4.46.3,!=4.47.0,!=4.47.1,!=4.48.0")
    check_version("datasets>=2.16.0,<=3.5.0")
    check_version("accelerate>=0.34.0,<=1.6.0")
    check_version("peft>=0.14.0,<=0.15.1")
luopl's avatar
luopl committed
96
    check_version("trl>=0.8.6,<=0.9.6")
chenych's avatar
chenych committed
97
98
    if is_transformers_version_greater_than("4.46.0") and not is_transformers_version_greater_than("4.48.1"):
        logger.warning_rank0_once("There are known bugs in transformers v4.46.0-v4.48.0, please use other versions.")
luopl's avatar
luopl committed
99
100


chenych's avatar
chenych committed
101
102
def calculate_tps(dataset: list[dict[str, Any]], metrics: dict[str, float], stage: Literal["sft", "rm"]) -> float:
    r"""Calculate effective tokens per second."""
luopl's avatar
luopl committed
103
104
105
106
107
108
109
110
111
    effective_token_num = 0
    for data in dataset:
        if stage == "sft":
            effective_token_num += len(data["input_ids"])
        elif stage == "rm":
            effective_token_num += len(data["chosen_input_ids"]) + len(data["rejected_input_ids"])

    result = effective_token_num * metrics["epoch"] / metrics["train_runtime"]
    return result / dist.get_world_size() if dist.is_initialized() else result
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
112
113


chenych's avatar
chenych committed
114
115
def count_parameters(model: "torch.nn.Module") -> tuple[int, int]:
    r"""Return the number of trainable parameters and number of all parameters in the model."""
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
116
117
118
119
120
121
122
    trainable_params, all_param = 0, 0
    for param in model.parameters():
        num_params = param.numel()
        # if using DS Zero 3 and the weights are initialized empty
        if num_params == 0 and hasattr(param, "ds_numel"):
            num_params = param.ds_numel

chenych's avatar
chenych committed
123
        # Due to the design of 4bit linear layers from bitsandbytes, multiply the number of parameters by itemsize
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
        if param.__class__.__name__ == "Params4bit":
            if hasattr(param, "quant_storage") and hasattr(param.quant_storage, "itemsize"):
                num_bytes = param.quant_storage.itemsize
            elif hasattr(param, "element_size"):  # for older pytorch version
                num_bytes = param.element_size()
            else:
                num_bytes = 1

            num_params = num_params * 2 * num_bytes

        all_param += num_params
        if param.requires_grad:
            trainable_params += num_params

    return trainable_params, all_param


chenych's avatar
chenych committed
141
def get_current_device() -> "torch.device":
chenych's avatar
chenych committed
142
    r"""Get the current available device."""
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
    if is_torch_xpu_available():
        device = "xpu:{}".format(os.environ.get("LOCAL_RANK", "0"))
    elif is_torch_npu_available():
        device = "npu:{}".format(os.environ.get("LOCAL_RANK", "0"))
    elif is_torch_mps_available():
        device = "mps:{}".format(os.environ.get("LOCAL_RANK", "0"))
    elif is_torch_cuda_available():
        device = "cuda:{}".format(os.environ.get("LOCAL_RANK", "0"))
    else:
        device = "cpu"

    return torch.device(device)


def get_device_count() -> int:
chenych's avatar
chenych committed
158
    r"""Get the number of available GPU or NPU devices."""
chenych's avatar
chenych committed
159
160
161
162
163
164
165
    if is_torch_xpu_available():
        return torch.xpu.device_count()
    elif is_torch_npu_available():
        return torch.npu.device_count()
    elif is_torch_cuda_available():
        return torch.cuda.device_count()
    else:
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
166
167
168
169
        return 0


def get_logits_processor() -> "LogitsProcessorList":
chenych's avatar
chenych committed
170
    r"""Get logits processor that removes NaN and Inf logits."""
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
171
172
173
174
175
    logits_processor = LogitsProcessorList()
    logits_processor.append(InfNanRemoveLogitsProcessor())
    return logits_processor


chenych's avatar
chenych committed
176
177
def get_peak_memory() -> tuple[int, int]:
    r"""Get the peak memory usage for the current device (in Bytes)."""
luopl's avatar
luopl committed
178
179
    if is_torch_npu_available():
        return torch.npu.max_memory_allocated(), torch.npu.max_memory_reserved()
chenych's avatar
chenych committed
180
181
    elif is_torch_xpu_available():
        return torch.xpu.max_memory_allocated(), torch.xpu.max_memory_reserved()
luopl's avatar
luopl committed
182
183
184
185
186
187
    elif is_torch_cuda_available():
        return torch.cuda.max_memory_allocated(), torch.cuda.max_memory_reserved()
    else:
        return 0, 0


chenych's avatar
chenych committed
188
def has_tokenized_data(path: "os.PathLike") -> bool:
chenych's avatar
chenych committed
189
    r"""Check if the path has a tokenized dataset."""
chenych's avatar
chenych committed
190
191
192
193
    return os.path.isdir(path) and len(os.listdir(path)) > 0


def infer_optim_dtype(model_dtype: "torch.dtype") -> "torch.dtype":
chenych's avatar
chenych committed
194
    r"""Infer the optimal dtype according to the model_dtype and device compatibility."""
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
195
196
197
198
199
200
201
202
    if _is_bf16_available and model_dtype == torch.bfloat16:
        return torch.bfloat16
    elif _is_fp16_available:
        return torch.float16
    else:
        return torch.float32


chenych's avatar
chenych committed
203
def is_gpu_or_npu_available() -> bool:
chenych's avatar
chenych committed
204
    r"""Check if the GPU or NPU is available."""
chenych's avatar
chenych committed
205
    return is_torch_npu_available() or is_torch_cuda_available() or is_torch_xpu_available()
chenych's avatar
chenych committed
206
207


chenych's avatar
chenych committed
208
def is_env_enabled(env_var: str, default: str = "0") -> bool:
chenych's avatar
chenych committed
209
    r"""Check if the environment variable is enabled."""
chenych's avatar
chenych committed
210
211
212
    return os.getenv(env_var, default).lower() in ["true", "y", "1"]


chenych's avatar
chenych committed
213
def numpify(inputs: Union["NDArray", "torch.Tensor"]) -> "NDArray":
chenych's avatar
chenych committed
214
    r"""Cast a torch tensor or a numpy array to a numpy array."""
chenych's avatar
chenych committed
215
216
217
218
219
220
221
222
223
224
225
    if isinstance(inputs, torch.Tensor):
        inputs = inputs.cpu()
        if inputs.dtype == torch.bfloat16:  # numpy does not support bfloat16 until 1.21.4
            inputs = inputs.to(torch.float32)

        inputs = inputs.numpy()

    return inputs


def skip_check_imports() -> None:
chenych's avatar
chenych committed
226
    r"""Avoid flash attention import error in custom model files."""
chenych's avatar
chenych committed
227
    if not is_env_enabled("FORCE_CHECK_IMPORTS"):
chenych's avatar
chenych committed
228
        transformers.dynamic_module_utils.check_imports = get_relative_imports
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
229
230
231


def torch_gc() -> None:
chenych's avatar
chenych committed
232
    r"""Collect GPU or NPU memory."""
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
233
    gc.collect()
chenych's avatar
chenych committed
234
235
236
237
238
239
240
    if is_torch_xpu_available():
        torch.xpu.empty_cache()
    elif is_torch_npu_available():
        torch.npu.empty_cache()
    elif is_torch_mps_available():
        torch.mps.empty_cache()
    elif is_torch_cuda_available():
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
241
242
243
        torch.cuda.empty_cache()


luopl's avatar
luopl committed
244
245
def try_download_model_from_other_hub(model_args: "ModelArguments") -> str:
    if (not use_modelscope() and not use_openmind()) or os.path.exists(model_args.model_name_or_path):
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
246
247
        return model_args.model_name_or_path

luopl's avatar
luopl committed
248
    if use_modelscope():
luopl's avatar
luopl committed
249
        check_version("modelscope>=1.11.0", mandatory=True)
luopl's avatar
luopl committed
250
        from modelscope import snapshot_download  # type: ignore
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
251
252

        revision = "master" if model_args.model_revision == "main" else model_args.model_revision
luopl's avatar
luopl committed
253
254
255
256
257
258
259
        return snapshot_download(
            model_args.model_name_or_path,
            revision=revision,
            cache_dir=model_args.cache_dir,
        )

    if use_openmind():
luopl's avatar
luopl committed
260
        check_version("openmind>=0.8.0", mandatory=True)
luopl's avatar
luopl committed
261
262
263
264
265
266
267
        from openmind.utils.hub import snapshot_download  # type: ignore

        return snapshot_download(
            model_args.model_name_or_path,
            revision=model_args.model_revision,
            cache_dir=model_args.cache_dir,
        )
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
268
269
270


def use_modelscope() -> bool:
chenych's avatar
chenych committed
271
    return is_env_enabled("USE_MODELSCOPE_HUB")
luopl's avatar
luopl committed
272
273
274


def use_openmind() -> bool:
chenych's avatar
chenych committed
275
    return is_env_enabled("USE_OPENMIND_HUB")
luopl's avatar
luopl committed
276
277


luopl's avatar
luopl committed
278
def use_ray() -> bool:
chenych's avatar
chenych committed
279
    return is_env_enabled("USE_RAY")
chenych's avatar
chenych committed
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296


def find_available_port() -> int:
    """Find an available port on the local machine."""
    sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    sock.bind(("", 0))
    port = sock.getsockname()[1]
    sock.close()
    return port


def fix_proxy(ipv6_enabled: bool) -> None:
    """Fix proxy settings for gradio ui."""
    os.environ["no_proxy"] = "localhost,127.0.0.1,0.0.0.0"
    if ipv6_enabled:
        for name in ("http_proxy", "https_proxy", "HTTP_PROXY", "HTTPS_PROXY"):
            os.environ.pop(name, None)