eval_bleu_rouge.py 2.49 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import logging
import time

import fire
from datasets import load_dataset


try:
chenych's avatar
chenych committed
24
25
26
    import jieba  # type: ignore
    from nltk.translate.bleu_score import SmoothingFunction, sentence_bleu  # type: ignore
    from rouge_chinese import Rouge  # type: ignore
chenych's avatar
chenych committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

    jieba.setLogLevel(logging.CRITICAL)
    jieba.initialize()
except ImportError:
    print("Please install llamafactory with `pip install -e .[metrics]`.")
    raise


def compute_metrics(sample):
    hypothesis = list(jieba.cut(sample["predict"]))
    reference = list(jieba.cut(sample["label"]))

    bleu_score = sentence_bleu(
        [list(sample["label"])],
        list(sample["predict"]),
        smoothing_function=SmoothingFunction().method3,
    )

    if len(" ".join(hypothesis).split()) == 0 or len(" ".join(reference).split()) == 0:
        result = {"rouge-1": {"f": 0.0}, "rouge-2": {"f": 0.0}, "rouge-l": {"f": 0.0}}
    else:
        rouge = Rouge()
        scores = rouge.get_scores(" ".join(hypothesis), " ".join(reference))
        result = scores[0]

    metric_result = {}
    for k, v in result.items():
        metric_result[k] = round(v["f"] * 100, 4)
chenych's avatar
chenych committed
55

chenych's avatar
chenych committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
    metric_result["bleu-4"] = round(bleu_score * 100, 4)

    return metric_result


def main(filename: str):
    start_time = time.time()
    dataset = load_dataset("json", data_files=filename, split="train")
    dataset = dataset.map(compute_metrics, num_proc=8, remove_columns=dataset.column_names)
    score_dict = dataset.to_dict()

    average_score = {}
    for task, scores in sorted(score_dict.items(), key=lambda x: x[0]):
        print(f"{task}: {sum(scores) / len(scores):.4f}")
        average_score[task] = sum(scores) / len(scores)

    with open("predictions_score.json", "w", encoding="utf-8") as f:
        json.dump(average_score, f, indent=4)

    print(f"\nDone in {time.time() - start_time:.3f}s.\nScore file saved to predictions_score.json")


if __name__ == "__main__":
    fire.Fire(main)