llama3_full_sft.yaml 1019 Bytes
Newer Older
chenych's avatar
chenych committed
1
2
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
chenych's avatar
chenych committed
3
trust_remote_code: true
chenych's avatar
chenych committed
4
5
6
7
8

### method
stage: sft
do_train: true
finetuning_type: full
chenych's avatar
chenych committed
9
deepspeed: examples/deepspeed/ds_z3_config.json  # choices: [ds_z0_config.json, ds_z2_config.json, ds_z3_config.json]
chenych's avatar
chenych committed
10
11
12
13

### dataset
dataset: identity,alpaca_en_demo
template: llama3
luopl's avatar
luopl committed
14
cutoff_len: 2048
chenych's avatar
chenych committed
15
16
17
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
chenych's avatar
chenych committed
18
dataloader_num_workers: 4
chenych's avatar
chenych committed
19
20
21
22
23
24
25

### output
output_dir: saves/llama3-8b/full/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
chenych's avatar
chenych committed
26
save_only_model: false
chenych's avatar
chenych committed
27
report_to: none  # choices: [none, wandb, tensorboard, swanlab, mlflow]
chenych's avatar
chenych committed
28
29
30
31
32
33
34
35
36
37

### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 2
learning_rate: 1.0e-5
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
chenych's avatar
chenych committed
38
resume_from_checkpoint: null
chenych's avatar
chenych committed
39
40

### eval
chenych's avatar
chenych committed
41
42
43
44
45
# eval_dataset: alpaca_en_demo
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500