llama3_freeze_sft.yaml 911 Bytes
Newer Older
chenych's avatar
chenych committed
1
2
### model
model_name_or_path: models/llama3-8b-pro
luopl's avatar
luopl committed
3
trust_remote_code: true
chenych's avatar
chenych committed
4
5
6
7
8
9
10
11
12
13
14
15

### method
stage: sft
do_train: true
finetuning_type: freeze
freeze_trainable_layers: 8
freeze_trainable_modules: all
use_llama_pro: true

### dataset
dataset: identity,alpaca_en_demo
template: llama3
luopl's avatar
luopl committed
16
cutoff_len: 2048
chenych's avatar
chenych committed
17
18
19
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
chenych's avatar
chenych committed
20
dataloader_num_workers: 4
chenych's avatar
chenych committed
21
22
23
24
25
26
27

### output
output_dir: saves/llama3-8b-pro/freeze/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
chenych's avatar
chenych committed
28
29
save_only_model: false
report_to: none  # choices: [none, wandb, tensorboard, swanlab, mlflow]
chenych's avatar
chenych committed
30
31
32
33
34
35
36
37
38
39
40
41

### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000

### eval
chenych's avatar
chenych committed
42
43
44
45
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500