llama3_full_sft.yaml 1 KB
Newer Older
chenych's avatar
chenych committed
1
2
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
luopl's avatar
luopl committed
3
trust_remote_code: true
chenych's avatar
chenych committed
4
5
6
7
8
9

### method
stage: sft
do_train: true
finetuning_type: full
use_galore: true
luopl's avatar
luopl committed
10
11
galore_layerwise: true  # choices: [true, false], use false for DDP training
galore_target: all
chenych's avatar
chenych committed
12
13
14
15
16
17
galore_rank: 128
galore_scale: 2.0

### dataset
dataset: identity,alpaca_en_demo
template: llama3
luopl's avatar
luopl committed
18
cutoff_len: 2048
chenych's avatar
chenych committed
19
20
21
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
chenych's avatar
chenych committed
22
dataloader_num_workers: 4
chenych's avatar
chenych committed
23
24
25
26
27
28
29

### output
output_dir: saves/llama3-8b/full/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
chenych's avatar
chenych committed
30
31
save_only_model: false
report_to: none  # choices: [none, wandb, tensorboard, swanlab, mlflow]
chenych's avatar
chenych committed
32
33
34

### train
per_device_train_batch_size: 1
luopl's avatar
luopl committed
35
gradient_accumulation_steps: 1  # use 1 for layerwise galore
chenych's avatar
chenych committed
36
37
38
39
40
41
42
43
learning_rate: 1.0e-5
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
pure_bf16: true
ddp_timeout: 180000000

### eval
chenych's avatar
chenych committed
44
45
46
47
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500