trainer.py 22.5 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
#
# This code is inspired by the HuggingFace's TRL library.
# https://github.com/huggingface/trl/blob/v0.8.0/trl/trainer/ppo_trainer.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
18
19
20
import math
import os
import sys
chenych's avatar
chenych committed
21
import warnings
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
22
from types import MethodType
chenych's avatar
chenych committed
23
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
24
25

import torch
chenych's avatar
chenych committed
26
from accelerate.utils import DistributedDataParallelKwargs
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
27
28
29
from tqdm import tqdm
from transformers import GenerationConfig, Trainer, TrainerControl, TrainerState
from transformers.optimization import get_scheduler
chenych's avatar
chenych committed
30
31
from transformers.trainer import DEFAULT_CALLBACKS
from transformers.trainer_callback import CallbackHandler
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
32
33
34
35
36
from transformers.trainer_pt_utils import remove_dummy_checkpoint
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
from transformers.utils import SAFE_WEIGHTS_NAME, WEIGHTS_NAME
from trl import PPOConfig, PPOTrainer
from trl.core import PPODecorators, logprobs_from_logits
chenych's avatar
chenych committed
37
from trl.models.utils import unwrap_model_for_generation
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
38
39
40

from ...extras.logging import get_logger
from ...extras.misc import AverageMeter, count_parameters, get_current_device, get_logits_processor
chenych's avatar
chenych committed
41
from ..callbacks import FixValueHeadModelCallback, SaveProcessorCallback
chenych's avatar
chenych committed
42
from ..trainer_utils import create_custom_optimzer, create_custom_scheduler
chenych's avatar
chenych committed
43
from .ppo_utils import dump_layernorm, get_rewards_from_server, replace_model, restore_layernorm
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
44
45
46
47


if TYPE_CHECKING:
    from datasets import Dataset
chenych's avatar
chenych committed
48
49
50
51
52
53
54
    from transformers import (
        DataCollatorWithPadding,
        PreTrainedTokenizer,
        ProcessorMixin,
        Seq2SeqTrainingArguments,
        TrainerCallback,
    )
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
    from trl import AutoModelForCausalLMWithValueHead

    from ...hparams import FinetuningArguments, GeneratingArguments, ModelArguments


logger = get_logger(__name__)


class CustomPPOTrainer(PPOTrainer, Trainer):
    r"""
    Inherits PPOTrainer.
    """

    def __init__(
        self,
        model_args: "ModelArguments",
        training_args: "Seq2SeqTrainingArguments",
        finetuning_args: "FinetuningArguments",
        generating_args: "GeneratingArguments",
chenych's avatar
chenych committed
74
        callbacks: Optional[List["TrainerCallback"]],
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
75
76
77
78
        model: "AutoModelForCausalLMWithValueHead",
        reward_model: Optional["AutoModelForCausalLMWithValueHead"],
        ref_model: Optional["AutoModelForCausalLMWithValueHead"],
        tokenizer: "PreTrainedTokenizer",
chenych's avatar
chenych committed
79
        processor: Optional["ProcessorMixin"],
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
80
        data_collator: "DataCollatorWithPadding",
chenych's avatar
chenych committed
81
82
83
84
85
86
        train_dataset: Optional["Dataset"] = None,
        eval_dataset: Optional["Dataset"] = None,
    ) -> None:
        if eval_dataset is not None:
            raise NotImplementedError("PPOTrainer does not support eval dataset yet.")

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
        backward_batch_size = training_args.per_device_train_batch_size * training_args.gradient_accumulation_steps
        ppo_config = PPOConfig(
            model_name=model_args.model_name_or_path,
            learning_rate=training_args.learning_rate,
            mini_batch_size=training_args.per_device_train_batch_size,
            batch_size=backward_batch_size * finetuning_args.ppo_buffer_size,
            gradient_accumulation_steps=training_args.gradient_accumulation_steps,
            ppo_epochs=finetuning_args.ppo_epochs,
            max_grad_norm=training_args.max_grad_norm,
            seed=training_args.seed,
            optimize_device_cache=True,
            target=finetuning_args.ppo_target,
            use_score_scaling=finetuning_args.ppo_score_norm,
            use_score_norm=finetuning_args.ppo_score_norm,
            whiten_rewards=finetuning_args.ppo_whiten_rewards,
            accelerator_kwargs={"step_scheduler_with_optimizer": False},
            log_with=training_args.report_to[0] if training_args.report_to else None,
            project_kwargs={"logging_dir": training_args.logging_dir},
        )

chenych's avatar
chenych committed
107
108
109
110
111
112
113
114
115
116
        # Add deepspeed config
        if training_args.deepspeed_plugin is not None:
            ppo_config.accelerator_kwargs["kwargs_handlers"] = [
                DistributedDataParallelKwargs(find_unused_parameters=training_args.ddp_find_unused_parameters)
            ]
            ppo_config.accelerator_kwargs["deepspeed_plugin"] = training_args.deepspeed_plugin
            if ppo_config.log_with is not None:
                logger.warning("PPOTrainer cannot use external logger when DeepSpeed is enabled.")
                ppo_config.log_with = None

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
117
118
119
120
121
        # Create optimizer and scheduler
        if training_args.max_steps > 0:
            num_training_steps = training_args.max_steps
        else:
            total_train_batch_size = backward_batch_size * finetuning_args.ppo_buffer_size * training_args.world_size
chenych's avatar
chenych committed
122
123
124
            num_training_steps = training_args.num_train_epochs * math.ceil(
                len(train_dataset) / total_train_batch_size
            )
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
125
126
127
128
129
130
131
132
133
134

        optimizer = self.create_optimizer(model, training_args, finetuning_args)
        scheduler = self.create_scheduler(training_args, num_training_steps, optimizer)

        PPOTrainer.__init__(
            self,
            config=ppo_config,
            model=model,
            ref_model=ref_model,
            tokenizer=tokenizer,
chenych's avatar
chenych committed
135
            dataset=train_dataset,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
            data_collator=data_collator,
            lr_scheduler=scheduler,
        )

        self.args = training_args
        self.model_args = model_args
        self.finetuning_args = finetuning_args
        self.reward_model = reward_model
        self.current_device = get_current_device()  # patch for deepspeed training

        self.generation_config = GenerationConfig(
            pad_token_id=self.tokenizer.pad_token_id,
            eos_token_id=[self.tokenizer.eos_token_id] + self.tokenizer.additional_special_tokens_ids,
            **generating_args.to_dict(),
        )

        self.state = TrainerState()
        self.control = TrainerControl()
chenych's avatar
chenych committed
154
155
156
157
158
        self.is_deepspeed_enabled = getattr(self.accelerator.state, "deepspeed_plugin", None) is not None
        self.is_fsdp_enabled = getattr(self.accelerator.state, "fsdp_plugin", None) is not None
        callbacks = DEFAULT_CALLBACKS if callbacks is None else DEFAULT_CALLBACKS + callbacks
        self.callback_handler = CallbackHandler(
            callbacks, self.accelerator.unwrap_model(self.model), self.tokenizer, self.optimizer, self.lr_scheduler
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
159
160
161
162
        )
        if self.args.max_steps > 0:
            logger.info("max_steps is given, it will override any value given in num_train_epochs")

chenych's avatar
chenych committed
163
164
165
        self.amp_context = torch.autocast(self.current_device.type)
        warnings.simplefilter("ignore")  # remove gc warnings on ref model

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
166
167
168
169
170
171
172
173
174
175
        if finetuning_args.reward_model_type == "full":
            if self.is_deepspeed_enabled:
                if not (
                    getattr(reward_model.pretrained_model, "is_loaded_in_8bit", False)
                    or getattr(reward_model.pretrained_model, "is_loaded_in_4bit", False)
                ):  # quantized models are already set on the correct device
                    self.reward_model = self._prepare_deepspeed(self.reward_model)
            else:
                self.reward_model = self.accelerator.prepare_model(self.reward_model, evaluation_mode=True)

chenych's avatar
chenych committed
176
177
178
179
180
        self.add_callback(FixValueHeadModelCallback)

        if processor is not None:
            self.add_callback(SaveProcessorCallback(processor))

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
181
        if finetuning_args.use_badam:
chenych's avatar
chenych committed
182
            from badam import BAdamCallback, clip_grad_norm_old_version
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
183

chenych's avatar
chenych committed
184
185
            self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_old_version, self.accelerator)
            self.add_callback(BAdamCallback)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

    def ppo_train(self, resume_from_checkpoint: Optional[str] = None) -> None:
        r"""
        Implements training loop for the PPO stage, like _inner_training_loop() in Huggingface's Trainer.
        """
        if resume_from_checkpoint is not None:
            raise ValueError("`resume_from_checkpoint` will be supported in the future version.")

        total_train_batch_size = (
            self.args.per_device_train_batch_size
            * self.args.gradient_accumulation_steps
            * self.finetuning_args.ppo_buffer_size
            * self.args.world_size
        )
        if self.args.max_steps > 0:
            num_examples = total_train_batch_size * self.args.max_steps
            num_train_epochs = sys.maxsize
            max_steps = self.args.max_steps
            steps_in_epoch = self.args.max_steps
        else:
            len_dataloader = len(self.dataloader)
            num_examples = len(self.dataset)
            num_train_epochs = self.args.num_train_epochs
            max_steps = math.ceil(num_train_epochs * len_dataloader)
            steps_in_epoch = len_dataloader

        self.state.max_steps = max_steps
        self.state.num_train_epochs = num_train_epochs
        self.state.is_local_process_zero = self.is_local_process_zero()
        self.state.is_world_process_zero = self.is_world_process_zero()

        if self.is_world_process_zero():
            logger.info("***** Running training *****")
chenych's avatar
chenych committed
219
220
221
            logger.info("  Num examples = {:,}".format(num_examples))
            logger.info("  Num Epochs = {:,}".format(num_train_epochs))
            logger.info("  Instantaneous batch size per device = {:,}".format(self.args.per_device_train_batch_size))
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
222
            logger.info(
chenych's avatar
chenych committed
223
                "  Total train batch size (w. parallel, buffer, distributed & accumulation) = {:,}".format(
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
224
225
226
                    total_train_batch_size
                )
            )
chenych's avatar
chenych committed
227
228
229
230
            logger.info("  Gradient Accumulation steps = {:,}".format(self.args.gradient_accumulation_steps))
            logger.info("  Num optimization epochs per batch = {:,}".format(self.finetuning_args.ppo_epochs))
            logger.info("  Total training steps = {:,}".format(max_steps))
            logger.info("  Number of trainable parameters = {:,}".format(count_parameters(self.model)[0]))
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
231
232
233
234

        dataiter = iter(self.dataloader)
        loss_meter = AverageMeter()
        reward_meter = AverageMeter()
chenych's avatar
chenych committed
235
        self.callback_handler.on_train_begin(self.args, self.state, self.control)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
236
237
238
239
240
241
242
243
244

        for step in tqdm(range(max_steps), disable=not self.is_local_process_zero()):
            try:
                batch = next(dataiter)
            except StopIteration:
                dataiter = iter(self.dataloader)
                batch = next(dataiter)

            # Get inputs
chenych's avatar
chenych committed
245
            self.model.eval()
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
246
247
248
249
250
251
            self.tokenizer.padding_side = "right"  # change padding side
            queries, responses, rewards = [], [], []
            for idx in range(0, self.config.batch_size, self.config.mini_batch_size):
                mini_batch_queries, mini_batch_responses = self.get_inputs(
                    batch[idx : idx + self.config.mini_batch_size]
                )
chenych's avatar
chenych committed
252
                mini_batch_rewards = self.get_rewards(mini_batch_queries, mini_batch_responses)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
253
254
255
256
257
                queries.extend(mini_batch_queries)
                responses.extend(mini_batch_responses)
                rewards.extend(mini_batch_rewards)

            # Run PPO step
chenych's avatar
chenych committed
258
            self.model.train()
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
259
260
261
262
263
264
265
266
267
268
269
270
271
272
            stats = self.step(queries, responses, rewards)
            self.tokenizer.padding_side = "left"  # restore padding side
            loss_meter.update(float(stats["ppo/loss/total"]), n=len(rewards))
            reward_meter.update(torch.stack(rewards).mean().item(), n=len(rewards))

            if self.config.log_with is not None:
                try:
                    batch["query"] = self.tokenizer.batch_decode(queries, skip_special_tokens=True)
                    batch["response"] = self.tokenizer.batch_decode(responses, skip_special_tokens=True)
                    self.log_stats(stats, batch, rewards)
                except Exception:
                    logger.warning("Failed to save stats due to unknown errors.")

            self.state.global_step += 1
chenych's avatar
chenych committed
273
            self.callback_handler.on_step_end(self.args, self.state, self.control)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
274
275
276
277
278
279
280
281
282
283
284

            if self.is_local_process_zero() and (step + 1) % self.args.logging_steps == 0:
                logs = dict(
                    loss=round(loss_meter.avg, 4),
                    reward=round(reward_meter.avg, 4),
                    learning_rate=stats["ppo/learning_rate"],
                    epoch=round(step / steps_in_epoch, 2),
                )
                tqdm.write(str(logs))
                logs["step"] = step
                self.state.log_history.append(logs)
chenych's avatar
chenych committed
285
                self.callback_handler.on_log(self.args, self.state, self.control, logs)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
286
287
288
289
290
291
292
                loss_meter.reset()
                reward_meter.reset()

            if (step + 1) % self.args.save_steps == 0:  # save checkpoint
                self.save_model(
                    os.path.join(self.args.output_dir, "{}-{}".format(PREFIX_CHECKPOINT_DIR, self.state.global_step))
                )
chenych's avatar
chenych committed
293
                self.callback_handler.on_save(self.args, self.state, self.control)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
294
295
296
297

            if self.control.should_epoch_stop or self.control.should_training_stop:
                break

chenych's avatar
chenych committed
298
        self.callback_handler.on_train_end(self.args, self.state, self.control)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
299
300
301
302
303
304
305

    def create_optimizer(
        self,
        model: "AutoModelForCausalLMWithValueHead",
        training_args: "Seq2SeqTrainingArguments",
        finetuning_args: "FinetuningArguments",
    ) -> "torch.optim.Optimizer":
chenych's avatar
chenych committed
306
        optimizer = create_custom_optimzer(model, training_args, finetuning_args)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
        if optimizer is None:
            decay_params, nodecay_params = [], []
            decay_param_names = self.get_decay_parameter_names(model)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    if name in decay_param_names:
                        decay_params.append(param)
                    else:
                        nodecay_params.append(param)

            optim_class, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args)
            param_groups = [
                dict(params=nodecay_params),
                dict(params=decay_params, weight_decay=training_args.weight_decay),
            ]
            optimizer = optim_class(param_groups, **optim_kwargs)

        return optimizer

    def create_scheduler(
        self, training_args: "Seq2SeqTrainingArguments", num_training_steps: int, optimizer: "torch.optim.Optimizer"
    ) -> "torch.optim.lr_scheduler.LRScheduler":
        create_custom_scheduler(training_args, num_training_steps, optimizer)
        lr_scheduler = get_scheduler(
            training_args.lr_scheduler_type,
            optimizer=optimizer,
            num_warmup_steps=training_args.get_warmup_steps(num_training_steps),
            num_training_steps=num_training_steps,
        )
        return lr_scheduler

    @torch.no_grad()
chenych's avatar
chenych committed
339
    def get_inputs(self, batch: Dict[str, "torch.Tensor"]) -> Tuple[List["torch.Tensor"], List["torch.Tensor"]]:
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
340
341
342
343
344
345
346
347
        r"""
        Generates model's responses given queries.
        """
        if batch["input_ids"].size(0) == 1:  # handle llama2 ppo with gradient accumulation > 1
            start_index = (batch["input_ids"][0] != self.tokenizer.pad_token_id).nonzero()[0].item()
            for k, v in batch.items():
                batch[k] = v[:, start_index:]

chenych's avatar
chenych committed
348
349
350
351
        with unwrap_model_for_generation(self.model, self.accelerator) as unwrapped_model:
            unwrapped_model: "AutoModelForCausalLMWithValueHead" = self.accelerator.unwrap_model(self.model)
            if self.model_args.upcast_layernorm:
                layernorm_params = dump_layernorm(unwrapped_model)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
352

chenych's avatar
chenych committed
353
354
355
356
357
            generate_output: "torch.Tensor" = unwrapped_model.generate(
                generation_config=self.generation_config, logits_processor=get_logits_processor(), **batch
            )
            if self.model_args.upcast_layernorm:
                restore_layernorm(unwrapped_model, layernorm_params)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
358
359
360
361
362
363

        query = batch["input_ids"].detach().cpu()
        response = generate_output[:, batch["input_ids"].size(-1) :].detach().cpu()
        queries, responses = [], []
        for i in range(len(query)):
            query_start_index = (query[i] != self.tokenizer.pad_token_id).nonzero()[0].item()
chenych's avatar
chenych committed
364
            response_indexes = (response[i] != self.tokenizer.pad_token_id).nonzero()
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
365

chenych's avatar
chenych committed
366
367
368
369
            if len(response_indexes) == 0:  # allow empty response
                response_length = 1
            elif self.tokenizer.eos_token_id == self.tokenizer.pad_token_id:  # include eos token
                response_length = response_indexes[-1].item() + 2
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
370
            else:
chenych's avatar
chenych committed
371
                response_length = response_indexes[-1].item() + 1
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
372
373
374
375
376
377
378
379
380

            queries.append(query[i, query_start_index:])  # remove padding from left
            responses.append(response[i, :response_length])  # remove padding from right

        return queries, responses

    @torch.no_grad()
    def get_rewards(
        self,
chenych's avatar
chenych committed
381
382
383
        queries: List["torch.Tensor"],
        responses: List["torch.Tensor"],
    ) -> List["torch.Tensor"]:
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
384
385
386
387
388
389
390
391
392
393
        r"""
        Computes scores using given reward model.

        Both inputs and outputs are put on CPU.
        """
        if self.finetuning_args.reward_model_type == "api":
            token_ids = [torch.cat((q, r), dim=-1).tolist() for q, r in zip(queries, responses)]
            messages = self.tokenizer.batch_decode(token_ids, skip_special_tokens=True)
            return get_rewards_from_server(self.reward_model, messages)

chenych's avatar
chenych committed
394
395
396
        batch: Dict[str, "torch.Tensor"] = self.prepare_model_inputs(queries, responses)
        unwrapped_model: "AutoModelForCausalLMWithValueHead" = self.accelerator.unwrap_model(self.model)

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
397
398
399
400
401
402
        if self.finetuning_args.reward_model_type == "lora":
            replace_model(unwrapped_model, target="reward")
            reward_model = self.model
        else:
            reward_model = self.reward_model

chenych's avatar
chenych committed
403
404
        with unwrap_model_for_generation(reward_model, self.accelerator), self.amp_context:  # support bf16
            _, _, values = reward_model(**batch, return_dict=True, use_cache=False)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
405
406
407
408

        if self.finetuning_args.reward_model_type == "lora":
            replace_model(unwrapped_model, target="default")

chenych's avatar
chenych committed
409
410
        rewards = values.gather(dim=-1, index=(batch["attention_mask"].sum(dim=-1, keepdim=True) - 1))
        return rewards.float().detach()  # use fp32 type
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
411
412
413
414
415

    @PPODecorators.empty_device_cache()
    def batched_forward_pass(
        self,
        model: "AutoModelForCausalLMWithValueHead",
chenych's avatar
chenych committed
416
417
418
        queries: "torch.Tensor",
        responses: "torch.Tensor",
        model_inputs: Dict[str, Any],
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
419
        return_logits: bool = False,
chenych's avatar
chenych committed
420
421
        response_masks: Optional["torch.Tensor"] = None,
    ) -> Tuple["torch.Tensor", Optional["torch.Tensor"], "torch.Tensor", "torch.Tensor"]:
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
        r"""
        Calculates model outputs in multiple batches.

        Subclass and override to inject custom behavior.
        """
        bs = len(queries)
        fbs = self.config.mini_batch_size
        all_logprobs = []
        all_logits = []
        all_masks = []
        all_values = []

        for i in range(math.ceil(bs / fbs)):
            input_kwargs = {key: value[i * fbs : (i + 1) * fbs] for key, value in model_inputs.items()}
            query_batch = queries[i * fbs : (i + 1) * fbs]
            response_batch = responses[i * fbs : (i + 1) * fbs]
            if response_masks is not None:
                response_masks_batch = response_masks[i * fbs : (i + 1) * fbs]
            input_ids = input_kwargs["input_ids"]
            attention_mask = input_kwargs["attention_mask"]

chenych's avatar
chenych committed
443
444
            with self.amp_context:  # support bf16
                logits, _, values = model(**input_kwargs, return_dict=True, use_cache=False)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

            logprobs = logprobs_from_logits(logits[:, :-1, :], input_ids[:, 1:])
            masks = torch.zeros_like(attention_mask)
            masks[:, :-1] = attention_mask[:, 1:]

            for j in range(len(query_batch)):
                start = len(query_batch[j]) - 1
                if attention_mask[j, 0] == 0:  # offset left padding
                    start += attention_mask[j, :].nonzero()[0].item()
                end = start + len(response_batch[j])

                if response_masks is not None:
                    response_masks_batch = torch.cat((torch.zeros_like(query_batch[j]), response_masks_batch[j]))[1:]

                masks[j, :start] = 0
                masks[j, end:] = 0
                if response_masks is not None:
                    masks[j, start:end] = masks[j, start:end] * response_masks_batch[j][start:end]

            if return_logits:
                all_logits.append(logits)
            else:
                del logits

            all_values.append(values)
            all_logprobs.append(logprobs)
            all_masks.append(masks)

        return (
            torch.cat(all_logprobs),
            torch.cat(all_logits)[:, :-1] if return_logits else None,
            torch.cat(all_values)[:, :-1],
            torch.cat(all_masks)[:, :-1],
        )

    def save_model(self, output_dir: Optional[str] = None) -> None:
        r"""
        Saves model checkpoint.

        Subclass and override to inject custom behavior.
        """
chenych's avatar
chenych committed
486
487
488
489
        if output_dir is None:
            output_dir = self.args.output_dir

        if self.is_fsdp_enabled or self.is_deepspeed_enabled:
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
490
            try:
chenych's avatar
chenych committed
491
492
493
                state_dict = self.accelerator.get_state_dict(self.model)  # must be called at all ranks
                if self.args.should_save:
                    self._save(output_dir, state_dict=state_dict)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
494
495
496
497
498
            except ValueError:
                logger.warning(
                    " stage3_gather_16bit_weights_on_model_save=false. Saving the full checkpoint instead,"
                    " use zero_to_fp32.py to recover weights"
                )
chenych's avatar
chenych committed
499
500
501
502
                if self.args.should_save:
                    self._save(output_dir, state_dict={})
                # remove the dummy state_dict
                remove_dummy_checkpoint(self.args.should_save, output_dir, [WEIGHTS_NAME, SAFE_WEIGHTS_NAME])
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
503
                self.model.save_checkpoint(output_dir)
chenych's avatar
chenych committed
504
505
506
507

        elif self.args.should_save:
            unwrapped_model: "AutoModelForCausalLMWithValueHead" = self.accelerator.unwrap_model(self.model)
            self._save(output_dir, state_dict=unwrapped_model.state_dict())