unsupervised.py 4.17 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple

from ...extras.logging import get_logger
from ..data_utils import Role
from .processor_utils import get_paligemma_token_type_ids, get_pixel_values, infer_seqlen


if TYPE_CHECKING:
    from transformers import PreTrainedTokenizer, ProcessorMixin

    from ...hparams import DataArguments
    from ..template import Template


logger = get_logger(__name__)


def _encode_unsupervised_example(
    prompt: Sequence[Dict[str, str]],
    response: Sequence[Dict[str, str]],
    system: Optional[str],
    tools: Optional[str],
    template: "Template",
    tokenizer: "PreTrainedTokenizer",
    processor: Optional["ProcessorMixin"],
chenych's avatar
chenych committed
40
    data_args: "DataArguments",
chenych's avatar
chenych committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
) -> Tuple[List[int], List[int]]:
    if processor is not None and not hasattr(processor, "image_seq_length"):  # llava-like models
        prompt[0]["content"] = template.image_token + prompt[0]["content"]

    if len(response) == 1:
        messages = prompt + response
    else:
        messages = prompt + [{"role": Role.ASSISTANT.value, "content": ""}]

    input_ids, labels = template.encode_oneturn(tokenizer, messages, system, tools)
    if template.efficient_eos:
        labels += [tokenizer.eos_token_id]

    if processor is not None and hasattr(processor, "image_seq_length"):  # paligemma models
        image_token_id = tokenizer.convert_tokens_to_ids(template.image_token)
        input_ids = [image_token_id] * getattr(processor, "image_seq_length") + input_ids

chenych's avatar
chenych committed
58
    source_len, target_len = infer_seqlen(len(input_ids), len(labels), data_args.cutoff_len)
chenych's avatar
chenych committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
    input_ids = input_ids[:source_len]
    labels = labels[:target_len]
    return input_ids, labels


def preprocess_unsupervised_dataset(
    examples: Dict[str, List[Any]],
    template: "Template",
    tokenizer: "PreTrainedTokenizer",
    processor: Optional["ProcessorMixin"],
    data_args: "DataArguments",
) -> Dict[str, List[List[int]]]:
    # build inputs with format `<bos> X` and labels with format `Y <eos>`
    model_inputs = {"input_ids": [], "attention_mask": [], "labels": []}
    if processor is not None:
        model_inputs["pixel_values"] = []
        if hasattr(processor, "image_seq_length"):  # paligemma models
            model_inputs["token_type_ids"] = []

    for i in range(len(examples["prompt"])):
        if len(examples["prompt"][i]) % 2 != 1:
            logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i]))
            continue

        input_ids, labels = _encode_unsupervised_example(
            prompt=examples["prompt"][i],
            response=examples["response"][i],
            system=examples["system"][i],
            tools=examples["tools"][i],
            template=template,
            tokenizer=tokenizer,
            processor=processor,
chenych's avatar
chenych committed
91
            data_args=data_args,
chenych's avatar
chenych committed
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
        )
        model_inputs["input_ids"].append(input_ids)
        model_inputs["attention_mask"].append([1] * len(input_ids))
        model_inputs["labels"].append(labels)
        if processor is not None:
            model_inputs["pixel_values"].append(get_pixel_values(examples["images"][i], processor))
            if hasattr(processor, "image_seq_length"):  # paligemma models
                model_inputs["token_type_ids"].append(get_paligemma_token_type_ids(len(input_ids), processor))

    return model_inputs


def print_unsupervised_dataset_example(example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer") -> None:
    print("input_ids:\n{}".format(example["input_ids"]))
    print("inputs:\n{}".format(tokenizer.decode(example["input_ids"], skip_special_tokens=False)))