feedback.py 5.87 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple

from ...extras.constants import IGNORE_INDEX
from ...extras.logging import get_logger
from .processor_utils import get_paligemma_token_type_ids, get_pixel_values, infer_seqlen


if TYPE_CHECKING:
    from transformers import PreTrainedTokenizer, ProcessorMixin

    from ...hparams import DataArguments
    from ..template import Template


logger = get_logger(__name__)


def _encode_feedback_example(
    prompt: Sequence[Dict[str, str]],
    response: Sequence[Dict[str, str]],
    kl_response: Sequence[Dict[str, str]],
    system: Optional[str],
    tools: Optional[str],
    template: "Template",
    tokenizer: "PreTrainedTokenizer",
    processor: Optional["ProcessorMixin"],
chenych's avatar
chenych committed
41
    data_args: "DataArguments",
chenych's avatar
chenych committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
) -> Tuple[List[int], List[int], List[int], List[int], bool]:
    if processor is not None and not hasattr(processor, "image_seq_length"):  # llava-like models
        prompt[0]["content"] = template.image_token + prompt[0]["content"]

    if response[0]["content"]:  # desired example
        kto_tag = True
        messages = prompt + [response[0]]
    else:  # undesired example
        kto_tag = False
        messages = prompt + [response[1]]

    if kl_response[0]["content"]:
        kl_messages = prompt + [kl_response[0]]
    else:
        kl_messages = prompt + [kl_response[1]]

    prompt_ids, response_ids = template.encode_oneturn(tokenizer, messages, system, tools)
    kl_prompt_ids, kl_response_ids = template.encode_oneturn(tokenizer, kl_messages, system, tools)

    if template.efficient_eos:
        response_ids += [tokenizer.eos_token_id]
        kl_response_ids += [tokenizer.eos_token_id]

    if processor is not None and hasattr(processor, "image_seq_length"):  # paligemma models
        image_token_id = tokenizer.convert_tokens_to_ids(template.image_token)
        prompt_ids = [image_token_id] * getattr(processor, "image_seq_length") + prompt_ids
        kl_prompt_ids = [image_token_id] * getattr(processor, "image_seq_length") + kl_prompt_ids

chenych's avatar
chenych committed
70
    source_len, target_len = infer_seqlen(len(prompt_ids), len(response_ids), data_args.cutoff_len)
chenych's avatar
chenych committed
71
72
    prompt_ids = prompt_ids[:source_len]
    response_ids = response_ids[:target_len]
chenych's avatar
chenych committed
73
    kl_source_len, kl_target_len = infer_seqlen(len(kl_prompt_ids), len(kl_response_ids), data_args.cutoff_len)
chenych's avatar
chenych committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    kl_prompt_ids = kl_prompt_ids[:kl_source_len]
    kl_response_ids = kl_response_ids[:kl_target_len]

    input_ids = prompt_ids + response_ids
    labels = [IGNORE_INDEX] * source_len + response_ids
    kl_input_ids = kl_prompt_ids + kl_response_ids
    kl_labels = [IGNORE_INDEX] * kl_source_len + kl_response_ids

    return input_ids, labels, kl_input_ids, kl_labels, kto_tag


def preprocess_feedback_dataset(
    examples: Dict[str, List[Any]],
    template: "Template",
    tokenizer: "PreTrainedTokenizer",
    processor: Optional["ProcessorMixin"],
    data_args: "DataArguments",
) -> Dict[str, List[List[int]]]:
    # create unrelated input-output pairs for estimating the KL term by flipping the matched pairs
    kl_response = examples["response"][::-1]
    model_inputs = {
        "input_ids": [],
        "attention_mask": [],
        "labels": [],
        "kl_input_ids": [],
        "kl_attention_mask": [],
        "kl_labels": [],
        "kto_tags": [],
    }
    if processor is not None:
        model_inputs["pixel_values"] = []
        if hasattr(processor, "image_seq_length"):  # paligemma models
            model_inputs["token_type_ids"] = []
            model_inputs["kl_token_type_ids"] = []

    for i in range(len(examples["prompt"])):
        if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) < 2:
            logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i]))
            continue

        input_ids, labels, kl_input_ids, kl_labels, kto_tag = _encode_feedback_example(
            prompt=examples["prompt"][i],
            response=examples["response"][i],
            kl_response=kl_response[i],
            system=examples["system"][i],
            tools=examples["tools"][i],
            template=template,
            tokenizer=tokenizer,
            processor=processor,
chenych's avatar
chenych committed
123
            data_args=data_args,
chenych's avatar
chenych committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
        )
        model_inputs["input_ids"].append(input_ids)
        model_inputs["attention_mask"].append([1] * len(input_ids))
        model_inputs["labels"].append(labels)
        model_inputs["kl_input_ids"].append(kl_input_ids)
        model_inputs["kl_attention_mask"].append([1] * len(kl_input_ids))
        model_inputs["kl_labels"].append(kl_labels)
        model_inputs["kto_tags"].append(kto_tag)
        if processor is not None:
            model_inputs["pixel_values"].append(get_pixel_values(examples["images"][i], processor))
            if hasattr(processor, "image_seq_length"):  # paligemma models
                model_inputs["token_type_ids"].append(get_paligemma_token_type_ids(len(input_ids), processor))
                model_inputs["kl_token_type_ids"].append(get_paligemma_token_type_ids(len(kl_input_ids), processor))

    desirable_num = sum([1 for tag in model_inputs["kto_tags"] if tag])
    undesirable_num = len(model_inputs["kto_tags"]) - desirable_num
    if desirable_num == 0 or undesirable_num == 0:
        logger.warning("Your dataset only has one preference type.")

    return model_inputs