pissa_init.py 3.09 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# coding=utf-8
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
#
# This code is based on the HuggingFace's PEFT library.
# https://github.com/huggingface/peft/blob/v0.11.0/examples/pissa_finetuning/preprocess.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
from typing import TYPE_CHECKING

import fire
from peft import LoraConfig, TaskType, get_peft_model
from transformers import AutoModelForCausalLM, AutoTokenizer


if TYPE_CHECKING:
    from transformers import PreTrainedModel


def quantize_pissa(
    model_name_or_path: str,
    output_dir: str,
chenych's avatar
chenych committed
34
    pissa_iter: int = 4,
chenych's avatar
chenych committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
    lora_alpha: int = None,
    lora_rank: int = 16,
    lora_dropout: float = 0,
    lora_target: tuple = ("q_proj", "v_proj"),
    save_safetensors: bool = True,
):
    r"""
    Initializes LoRA weights with Principal Singular values and Singular vectors Adaptation (PiSSA)
    Usage: python pissa_init.py --model_name_or_path path_to_model --output_dir output_dir
    """
    if isinstance(lora_target, str):
        lora_target = [name.strip() for name in lora_target.split(",")]

    tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True)
    model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype="auto")

    lora_config = LoraConfig(
        task_type=TaskType.CAUSAL_LM,
        r=lora_rank,
        lora_alpha=lora_alpha if lora_alpha is not None else lora_rank * 2,
        lora_dropout=lora_dropout,
        target_modules=lora_target,
        init_lora_weights="pissa" if pissa_iter == -1 else "pissa_niter_{}".format(pissa_iter),
    )

    # Init PiSSA model
    peft_model = get_peft_model(model, lora_config)
    pissa_dir = os.path.join(output_dir, "pissa_init")

    # Save PiSSA model
    setattr(peft_model.peft_config["default"], "init_lora_weights", True)  # don't apply pissa again
    peft_model.save_pretrained(pissa_dir, safe_serialization=save_safetensors)
    print("Adapter weights saved in {}".format(pissa_dir))

    # Save base model
    base_model: "PreTrainedModel" = peft_model.unload()
    base_model.save_pretrained(output_dir, safe_serialization=save_safetensors)
    tokenizer.save_pretrained(output_dir)
    print("Model weights saved in {}".format(output_dir))

    print("- Fine-tune this model with:")
    print("model_name_or_path: {}".format(output_dir))
    print("adapter_name_or_path: {}".format(pissa_dir))
    print("finetuning_type: lora")
    print("pissa_init: false")
    print("pissa_convert: true")
    print("- and optionally with:")
    print("quantization_bit: 4")


if __name__ == "__main__":
    fire.Fire(quantize_pissa)