test_template.py 10.1 KB
Newer Older
chenych's avatar
chenych committed
1
# Copyright 2025 the LlamaFactory team.
chenych's avatar
chenych committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
chenych's avatar
chenych committed
16
from typing import TYPE_CHECKING
chenych's avatar
chenych committed
17
18
19
20
21

import pytest
from transformers import AutoTokenizer

from llamafactory.data import get_template_and_fix_tokenizer
chenych's avatar
chenych committed
22
from llamafactory.data.template import parse_template
luopl's avatar
luopl committed
23
from llamafactory.hparams import DataArguments
chenych's avatar
chenych committed
24
25
26
27
28
29


if TYPE_CHECKING:
    from transformers import PreTrainedTokenizer


luopl's avatar
luopl committed
30
HF_TOKEN = os.getenv("HF_TOKEN")
chenych's avatar
chenych committed
31

luopl's avatar
luopl committed
32
TINY_LLAMA = os.getenv("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
chenych's avatar
chenych committed
33
34
35
36
37
38
39
40
41
42

MESSAGES = [
    {"role": "user", "content": "How are you"},
    {"role": "assistant", "content": "I am fine!"},
    {"role": "user", "content": "你好"},
    {"role": "assistant", "content": "很高兴认识你!"},
]


def _check_tokenization(
chenych's avatar
chenych committed
43
    tokenizer: "PreTrainedTokenizer", batch_input_ids: list[list[int]], batch_text: list[str]
chenych's avatar
chenych committed
44
) -> None:
chenych's avatar
chenych committed
45
    r"""Check token ids and texts.
luopl's avatar
luopl committed
46
47
48
49

    encode(text) == token_ids
    decode(token_ids) == text
    """
chenych's avatar
chenych committed
50
    for input_ids, text in zip(batch_input_ids, batch_text):
luopl's avatar
luopl committed
51
        assert tokenizer.encode(text, add_special_tokens=False) == input_ids
chenych's avatar
chenych committed
52
53
54
        assert tokenizer.decode(input_ids) == text


luopl's avatar
luopl committed
55
def _check_template(model_id: str, template_name: str, prompt_str: str, answer_str: str, use_fast: bool) -> None:
chenych's avatar
chenych committed
56
    r"""Check template.
chenych's avatar
chenych committed
57
58
59
60
61
62

    Args:
        model_id: the model id on hugging face hub.
        template_name: the template name.
        prompt_str: the string corresponding to the prompt part.
        answer_str: the string corresponding to the answer part.
luopl's avatar
luopl committed
63
        use_fast: whether to use fast tokenizer.
chenych's avatar
chenych committed
64

chenych's avatar
chenych committed
65
    """
luopl's avatar
luopl committed
66
67
68
69
70
71
72
73
    tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=use_fast, token=HF_TOKEN)
    content_str = tokenizer.apply_chat_template(MESSAGES, tokenize=False)
    content_ids = tokenizer.apply_chat_template(MESSAGES, tokenize=True)
    template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template=template_name))
    prompt_ids, answer_ids = template.encode_oneturn(tokenizer, MESSAGES)
    assert content_str == prompt_str + answer_str
    assert content_ids == prompt_ids + answer_ids
    _check_tokenization(tokenizer, (prompt_ids, answer_ids), (prompt_str, answer_str))
chenych's avatar
chenych committed
74
75
76
77
78


@pytest.mark.parametrize("use_fast", [True, False])
def test_encode_oneturn(use_fast: bool):
    tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA, use_fast=use_fast)
luopl's avatar
luopl committed
79
    template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="llama3"))
chenych's avatar
chenych committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
    prompt_ids, answer_ids = template.encode_oneturn(tokenizer, MESSAGES)
    prompt_str = (
        "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\nHow are you<|eot_id|>"
        "<|start_header_id|>assistant<|end_header_id|>\n\nI am fine!<|eot_id|>"
        "<|start_header_id|>user<|end_header_id|>\n\n你好<|eot_id|>"
        "<|start_header_id|>assistant<|end_header_id|>\n\n"
    )
    answer_str = "很高兴认识你!<|eot_id|>"
    _check_tokenization(tokenizer, (prompt_ids, answer_ids), (prompt_str, answer_str))


@pytest.mark.parametrize("use_fast", [True, False])
def test_encode_multiturn(use_fast: bool):
    tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA, use_fast=use_fast)
luopl's avatar
luopl committed
94
    template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="llama3"))
chenych's avatar
chenych committed
95
96
97
98
99
100
101
    encoded_pairs = template.encode_multiturn(tokenizer, MESSAGES)
    prompt_str_1 = (
        "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\nHow are you<|eot_id|>"
        "<|start_header_id|>assistant<|end_header_id|>\n\n"
    )
    answer_str_1 = "I am fine!<|eot_id|>"
    prompt_str_2 = (
luopl's avatar
luopl committed
102
        "<|start_header_id|>user<|end_header_id|>\n\n你好<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
chenych's avatar
chenych committed
103
104
105
106
107
108
109
110
111
112
113
114
115
    )
    answer_str_2 = "很高兴认识你!<|eot_id|>"
    _check_tokenization(
        tokenizer,
        (encoded_pairs[0][0], encoded_pairs[0][1], encoded_pairs[1][0], encoded_pairs[1][1]),
        (prompt_str_1, answer_str_1, prompt_str_2, answer_str_2),
    )


@pytest.mark.parametrize("use_fast", [True, False])
def test_jinja_template(use_fast: bool):
    tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA, use_fast=use_fast)
    ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA, use_fast=use_fast)
luopl's avatar
luopl committed
116
    template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="llama3"))
chenych's avatar
chenych committed
117
    tokenizer.chat_template = template._get_jinja_template(tokenizer)  # llama3 template no replace
chenych's avatar
chenych committed
118
119
120
121
    assert tokenizer.chat_template != ref_tokenizer.chat_template
    assert tokenizer.apply_chat_template(MESSAGES) == ref_tokenizer.apply_chat_template(MESSAGES)


chenych's avatar
chenych committed
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
def test_ollama_modelfile():
    tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
    template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="llama3"))
    assert template.get_ollama_modelfile(tokenizer) == (
        "# ollama modelfile auto-generated by llamafactory\n\n"
        "FROM .\n\n"
        'TEMPLATE """<|begin_of_text|>'
        "{{ if .System }}<|start_header_id|>system<|end_header_id|>\n\n{{ .System }}<|eot_id|>{{ end }}"
        '{{ range .Messages }}{{ if eq .Role "user" }}<|start_header_id|>user<|end_header_id|>\n\n{{ .Content }}'
        "<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
        '{{ else if eq .Role "assistant" }}{{ .Content }}<|eot_id|>{{ end }}{{ end }}"""\n\n'
        'PARAMETER stop "<|eom_id|>"\n'
        'PARAMETER stop "<|eot_id|>"\n'
        "PARAMETER num_ctx 4096\n"
    )


luopl's avatar
luopl committed
139
140
141
142
143
144
def test_get_stop_token_ids():
    tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
    template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="llama3"))
    assert set(template.get_stop_token_ids(tokenizer)) == {128008, 128009}


chenych's avatar
chenych committed
145
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
luopl's avatar
luopl committed
146
147
@pytest.mark.parametrize("use_fast", [True, False])
def test_gemma_template(use_fast: bool):
chenych's avatar
chenych committed
148
149
150
151
152
153
    prompt_str = (
        "<bos><start_of_turn>user\nHow are you<end_of_turn>\n"
        "<start_of_turn>model\nI am fine!<end_of_turn>\n"
        "<start_of_turn>user\n你好<end_of_turn>\n"
        "<start_of_turn>model\n"
    )
luopl's avatar
luopl committed
154
155
    answer_str = "很高兴认识你!<end_of_turn>\n"
    _check_template("google/gemma-2-9b-it", "gemma", prompt_str, answer_str, use_fast)
chenych's avatar
chenych committed
156
157
158


@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
luopl's avatar
luopl committed
159
160
@pytest.mark.parametrize("use_fast", [True, False])
def test_llama3_template(use_fast: bool):
chenych's avatar
chenych committed
161
162
163
164
165
166
167
    prompt_str = (
        "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\nHow are you<|eot_id|>"
        "<|start_header_id|>assistant<|end_header_id|>\n\nI am fine!<|eot_id|>"
        "<|start_header_id|>user<|end_header_id|>\n\n你好<|eot_id|>"
        "<|start_header_id|>assistant<|end_header_id|>\n\n"
    )
    answer_str = "很高兴认识你!<|eot_id|>"
luopl's avatar
luopl committed
168
169
170
    _check_template("meta-llama/Meta-Llama-3-8B-Instruct", "llama3", prompt_str, answer_str, use_fast)


chenych's avatar
chenych committed
171
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
luopl's avatar
luopl committed
172
173
174
175
176
177
178
179
180
181
182
183
@pytest.mark.parametrize(
    "use_fast", [True, pytest.param(False, marks=pytest.mark.xfail(reason="Phi-4 slow tokenizer is broken."))]
)
def test_phi4_template(use_fast: bool):
    prompt_str = (
        "<|im_start|>user<|im_sep|>How are you<|im_end|>"
        "<|im_start|>assistant<|im_sep|>I am fine!<|im_end|>"
        "<|im_start|>user<|im_sep|>你好<|im_end|>"
        "<|im_start|>assistant<|im_sep|>"
    )
    answer_str = "很高兴认识你!<|im_end|>"
    _check_template("microsoft/phi-4", "phi4", prompt_str, answer_str, use_fast)
chenych's avatar
chenych committed
184
185


chenych's avatar
chenych committed
186
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")  # TODO: why it is gated?
luopl's avatar
luopl committed
187
188
@pytest.mark.parametrize("use_fast", [True, False])
def test_qwen_template(use_fast: bool):
chenych's avatar
chenych committed
189
190
191
192
193
194
195
    prompt_str = (
        "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n"
        "<|im_start|>user\nHow are you<|im_end|>\n"
        "<|im_start|>assistant\nI am fine!<|im_end|>\n"
        "<|im_start|>user\n你好<|im_end|>\n"
        "<|im_start|>assistant\n"
    )
luopl's avatar
luopl committed
196
197
    answer_str = "很高兴认识你!<|im_end|>\n"
    _check_template("Qwen/Qwen2-7B-Instruct", "qwen", prompt_str, answer_str, use_fast)
chenych's avatar
chenych committed
198
199


luopl's avatar
luopl committed
200
201
202
@pytest.mark.parametrize("use_fast", [True, False])
@pytest.mark.xfail(reason="Yi tokenizer is broken.")
def test_yi_template(use_fast: bool):
chenych's avatar
chenych committed
203
204
205
206
207
208
    prompt_str = (
        "<|im_start|>user\nHow are you<|im_end|>\n"
        "<|im_start|>assistant\nI am fine!<|im_end|>\n"
        "<|im_start|>user\n你好<|im_end|>\n"
        "<|im_start|>assistant\n"
    )
luopl's avatar
luopl committed
209
210
    answer_str = "很高兴认识你!<|im_end|>\n"
    _check_template("01-ai/Yi-1.5-6B-Chat", "yi", prompt_str, answer_str, use_fast)
chenych's avatar
chenych committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234


def test_parse_template():
    tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA, token=HF_TOKEN)
    template = parse_template(tokenizer)
    assert template.format_user.slots == [
        "<|start_header_id|>user<|end_header_id|>\n\n{{content}}<|eot_id|>"
        "<|start_header_id|>assistant<|end_header_id|>\n\n"
    ]
    assert template.format_assistant.slots == ["{{content}}<|eot_id|>"]
    assert template.format_system.slots == ["<|start_header_id|>system<|end_header_id|>\n\n{{content}}<|eot_id|>"]
    assert template.format_prefix.slots == ["<|begin_of_text|>"]
    assert template.default_system == ""


@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
def test_parse_qwen_template():
    tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-7B-Instruct", token=HF_TOKEN)
    template = parse_template(tokenizer)
    assert template.format_user.slots == ["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]
    assert template.format_assistant.slots == ["{{content}}<|im_end|>\n"]
    assert template.format_system.slots == ["<|im_start|>system\n{{content}}<|im_end|>\n"]
    assert template.format_prefix.slots == []
    assert template.default_system == "You are a helpful assistant."