test_full.py 1.63 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os

import torch

from llamafactory.train.test_utils import load_infer_model, load_train_model


luopl's avatar
luopl committed
22
TINY_LLAMA = os.getenv("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
chenych's avatar
chenych committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

TRAIN_ARGS = {
    "model_name_or_path": TINY_LLAMA,
    "stage": "sft",
    "do_train": True,
    "finetuning_type": "full",
    "dataset": "llamafactory/tiny-supervised-dataset",
    "dataset_dir": "ONLINE",
    "template": "llama3",
    "cutoff_len": 1024,
    "overwrite_cache": True,
    "output_dir": "dummy_dir",
    "overwrite_output_dir": True,
    "fp16": True,
}

INFER_ARGS = {
    "model_name_or_path": TINY_LLAMA,
    "finetuning_type": "full",
    "template": "llama3",
    "infer_dtype": "float16",
}


def test_full_train():
    model = load_train_model(**TRAIN_ARGS)
    for param in model.parameters():
        assert param.requires_grad is True
        assert param.dtype == torch.float32


def test_full_inference():
    model = load_infer_model(**INFER_ARGS)
    for param in model.parameters():
        assert param.requires_grad is False
        assert param.dtype == torch.float16