finetuning_args.py 18.2 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

luopl's avatar
luopl committed
15
16
from dataclasses import asdict, dataclass, field
from typing import Any, Dict, List, Literal, Optional
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
17
18
19
20
21
22
23
24


@dataclass
class FreezeArguments:
    r"""
    Arguments pertaining to the freeze (partial-parameter) training.
    """

chenych's avatar
chenych committed
25
26
27
28
29
30
31
32
33
34
35
    freeze_trainable_layers: int = field(
        default=2,
        metadata={
            "help": (
                "The number of trainable layers for freeze (partial-parameter) fine-tuning. "
                "Positive numbers mean the last n layers are set as trainable, "
                "negative numbers mean the first n layers are set as trainable."
            )
        },
    )
    freeze_trainable_modules: str = field(
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
36
37
        default="all",
        metadata={
chenych's avatar
chenych committed
38
39
40
41
42
            "help": (
                "Name(s) of trainable modules for freeze (partial-parameter) fine-tuning. "
                "Use commas to separate multiple modules. "
                "Use `all` to specify all the available modules."
            )
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
43
44
        },
    )
chenych's avatar
chenych committed
45
46
47
48
49
50
51
52
53
    freeze_extra_modules: Optional[str] = field(
        default=None,
        metadata={
            "help": (
                "Name(s) of modules apart from hidden layers to be set as trainable "
                "for freeze (partial-parameter) fine-tuning. "
                "Use commas to separate multiple modules."
            )
        },
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
54
55
56
57
58
59
60
61
62
63
64
65
    )


@dataclass
class LoraArguments:
    r"""
    Arguments pertaining to the LoRA training.
    """

    additional_target: Optional[str] = field(
        default=None,
        metadata={
chenych's avatar
chenych committed
66
67
68
69
70
            "help": (
                "Name(s) of modules apart from LoRA layers to be set as trainable "
                "and saved in the final checkpoint. "
                "Use commas to separate multiple modules."
            )
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
        },
    )
    lora_alpha: Optional[int] = field(
        default=None,
        metadata={"help": "The scale factor for LoRA fine-tuning (default: lora_rank * 2)."},
    )
    lora_dropout: float = field(
        default=0.0,
        metadata={"help": "Dropout rate for the LoRA fine-tuning."},
    )
    lora_rank: int = field(
        default=8,
        metadata={"help": "The intrinsic dimension for LoRA fine-tuning."},
    )
    lora_target: str = field(
        default="all",
        metadata={
chenych's avatar
chenych committed
88
89
90
91
92
            "help": (
                "Name(s) of target modules to apply LoRA. "
                "Use commas to separate multiple modules. "
                "Use `all` to specify all the linear modules."
            )
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
        },
    )
    loraplus_lr_ratio: Optional[float] = field(
        default=None,
        metadata={"help": "LoRA plus learning rate ratio (lr_B / lr_A)."},
    )
    loraplus_lr_embedding: float = field(
        default=1e-6,
        metadata={"help": "LoRA plus learning rate for lora embedding layers."},
    )
    use_rslora: bool = field(
        default=False,
        metadata={"help": "Whether or not to use the rank stabilization scaling factor for LoRA layer."},
    )
    use_dora: bool = field(
        default=False,
        metadata={"help": "Whether or not to use the weight-decomposed lora method (DoRA)."},
    )
chenych's avatar
chenych committed
111
112
113
114
115
116
117
118
119
120
121
122
    pissa_init: bool = field(
        default=False,
        metadata={"help": "Whether or not to initialize a PiSSA adapter."},
    )
    pissa_iter: int = field(
        default=16,
        metadata={"help": "The number of iteration steps performed by FSVD in PiSSA. Use -1 to disable it."},
    )
    pissa_convert: bool = field(
        default=False,
        metadata={"help": "Whether or not to convert the PiSSA adapter to a normal LoRA adapter."},
    )
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
123
124
125
126
127
128
129
130
131
    create_new_adapter: bool = field(
        default=False,
        metadata={"help": "Whether or not to create a new adapter with randomly initialized weight."},
    )


@dataclass
class RLHFArguments:
    r"""
chenych's avatar
chenych committed
132
    Arguments pertaining to the PPO, DPO and KTO training.
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
133
134
    """

chenych's avatar
chenych committed
135
    pref_beta: float = field(
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
136
        default=0.1,
chenych's avatar
chenych committed
137
        metadata={"help": "The beta parameter in the preference loss."},
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
138
    )
chenych's avatar
chenych committed
139
140
141
142
143
    pref_ftx: float = field(
        default=0.0,
        metadata={"help": "The supervised fine-tuning loss coefficient in DPO training."},
    )
    pref_loss: Literal["sigmoid", "hinge", "ipo", "kto_pair", "orpo", "simpo"] = field(
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
144
145
146
147
148
149
150
        default="sigmoid",
        metadata={"help": "The type of DPO loss to use."},
    )
    dpo_label_smoothing: float = field(
        default=0.0,
        metadata={"help": "The robust DPO label smoothing parameter in cDPO that should be between 0 and 0.5."},
    )
chenych's avatar
chenych committed
151
152
153
    kto_chosen_weight: float = field(
        default=1.0,
        metadata={"help": "The weight factor of the desirable losses in KTO training."},
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
154
    )
chenych's avatar
chenych committed
155
156
157
158
159
160
161
    kto_rejected_weight: float = field(
        default=1.0,
        metadata={"help": "The weight factor of the undesirable losses in KTO training."},
    )
    simpo_gamma: float = field(
        default=0.5,
        metadata={"help": "The target reward margin term in SimPO loss."},
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
    )
    ppo_buffer_size: int = field(
        default=1,
        metadata={"help": "The number of mini-batches to make experience buffer in a PPO optimization step."},
    )
    ppo_epochs: int = field(
        default=4,
        metadata={"help": "The number of epochs to perform in a PPO optimization step."},
    )
    ppo_score_norm: bool = field(
        default=False,
        metadata={"help": "Use score normalization in PPO training."},
    )
    ppo_target: float = field(
        default=6.0,
        metadata={"help": "Target KL value for adaptive KL control in PPO training."},
    )
    ppo_whiten_rewards: bool = field(
        default=False,
        metadata={"help": "Whiten the rewards before compute advantages in PPO training."},
    )
    ref_model: Optional[str] = field(
        default=None,
        metadata={"help": "Path to the reference model used for the PPO or DPO training."},
    )
    ref_model_adapters: Optional[str] = field(
        default=None,
        metadata={"help": "Path to the adapters of the reference model."},
    )
    ref_model_quantization_bit: Optional[int] = field(
        default=None,
        metadata={"help": "The number of bits to quantize the reference model."},
    )
    reward_model: Optional[str] = field(
        default=None,
        metadata={"help": "Path to the reward model used for the PPO training."},
    )
    reward_model_adapters: Optional[str] = field(
        default=None,
        metadata={"help": "Path to the adapters of the reward model."},
    )
    reward_model_quantization_bit: Optional[int] = field(
        default=None,
        metadata={"help": "The number of bits to quantize the reward model."},
    )
    reward_model_type: Literal["lora", "full", "api"] = field(
        default="lora",
        metadata={"help": "The type of the reward model in PPO training. Lora model only supports lora training."},
    )


@dataclass
class GaloreArguments:
    r"""
    Arguments pertaining to the GaLore algorithm.
    """

    use_galore: bool = field(
        default=False,
        metadata={"help": "Whether or not to use the gradient low-Rank projection (GaLore)."},
    )
    galore_target: str = field(
        default="all",
        metadata={
chenych's avatar
chenych committed
226
227
228
229
            "help": (
                "Name(s) of modules to apply GaLore. Use commas to separate multiple modules. "
                "Use `all` to specify all the linear modules."
            )
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
        },
    )
    galore_rank: int = field(
        default=16,
        metadata={"help": "The rank of GaLore gradients."},
    )
    galore_update_interval: int = field(
        default=200,
        metadata={"help": "Number of steps to update the GaLore projection."},
    )
    galore_scale: float = field(
        default=0.25,
        metadata={"help": "GaLore scaling coefficient."},
    )
    galore_proj_type: Literal["std", "reverse_std", "right", "left", "full"] = field(
        default="std",
        metadata={"help": "Type of GaLore projection."},
    )
    galore_layerwise: bool = field(
        default=False,
        metadata={"help": "Whether or not to enable layer-wise update to further save memory."},
    )


luopl's avatar
luopl committed
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
@dataclass
class ApolloArguments:
    r"""
    Arguments pertaining to the APOLLO algorithm.
    """

    use_apollo: bool = field(
        default=False,
        metadata={"help": "Whether or not to use the APOLLO optimizer."},
    )
    apollo_target: str = field(
        default="all",
        metadata={
            "help": (
                "Name(s) of modules to apply APOLLO. Use commas to separate multiple modules. "
                "Use `all` to specify all the linear modules."
            )
        },
    )
    apollo_rank: int = field(
        default=16,
        metadata={"help": "The rank of APOLLO gradients."},
    )
    apollo_update_interval: int = field(
        default=200,
        metadata={"help": "Number of steps to update the APOLLO projection."},
    )
    apollo_scale: float = field(
        default=1.0,
        metadata={"help": "APOLLO scaling coefficient."},
    )
    apollo_proj: Literal["svd", "random"] = field(
        default="random",
        metadata={"help": "Type of APOLLO low-rank projection algorithm (svd or random)."},
    )
    apollo_proj_type: Literal["std", "right", "left"] = field(
        default="std",
        metadata={"help": "Type of APOLLO projection."},
    )
    apollo_scale_type: Literal["channel", "tensor"] = field(
        default="channel",
        metadata={"help": "Type of APOLLO scaling (channel or tensor)."},
    )
    apollo_layerwise: bool = field(
        default=False,
        metadata={"help": "Whether or not to enable layer-wise update to further save memory."},
    )
    apollo_scale_front: bool = field(
        default=False,
        metadata={"help": "Whether or not to use the norm-growth limiter in front of gradient scaling."},
    )


Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
@dataclass
class BAdamArgument:
    r"""
    Arguments pertaining to the BAdam optimizer.
    """

    use_badam: bool = field(
        default=False,
        metadata={"help": "Whether or not to use the BAdam optimizer."},
    )
    badam_mode: Literal["layer", "ratio"] = field(
        default="layer",
        metadata={"help": "Whether to use layer-wise or ratio-wise BAdam optimizer."},
    )
    badam_start_block: Optional[int] = field(
        default=None,
        metadata={"help": "The starting block index for layer-wise BAdam."},
    )
    badam_switch_mode: Optional[Literal["ascending", "descending", "random", "fixed"]] = field(
        default="ascending",
        metadata={"help": "the strategy of picking block to update for layer-wise BAdam."},
    )
chenych's avatar
chenych committed
329
330
331
332
333
334
    badam_switch_interval: Optional[int] = field(
        default=50,
        metadata={
            "help": "Number of steps to update the block for layer-wise BAdam. Use -1 to disable the block update."
        },
    )
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
335
    badam_update_ratio: float = field(
chenych's avatar
chenych committed
336
        default=0.05,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
337
338
339
340
341
        metadata={"help": "The ratio of the update for ratio-wise BAdam."},
    )
    badam_mask_mode: Literal["adjacent", "scatter"] = field(
        default="adjacent",
        metadata={
chenych's avatar
chenych committed
342
343
344
345
346
            "help": (
                "The mode of the mask for BAdam optimizer. "
                "`adjacent` means that the trainable parameters are adjacent to each other, "
                "`scatter` means that trainable parameters are randomly choosed from the weight."
            )
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
347
348
349
350
351
        },
    )
    badam_verbose: int = field(
        default=0,
        metadata={
chenych's avatar
chenych committed
352
353
354
355
            "help": (
                "The verbosity level of BAdam optimizer. "
                "0 for no print, 1 for print the block prefix, 2 for print trainable parameters."
            )
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
356
357
358
359
360
        },
    )


@dataclass
luopl's avatar
luopl committed
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
class SwanLabArguments:
    use_swanlab: bool = field(
        default=False,
        metadata={"help": "Whether or not to use the SwanLab (an experiment tracking and visualization tool)."},
    )
    swanlab_project: str = field(
        default="llamafactory",
        metadata={"help": "The project name in SwanLab."},
    )
    swanlab_workspace: str = field(
        default=None,
        metadata={"help": "The workspace name in SwanLab."},
    )
    swanlab_run_name: str = field(
        default=None,
        metadata={"help": "The experiment name in SwanLab."},
    )
    swanlab_mode: Literal["cloud", "local"] = field(
        default="cloud",
        metadata={"help": "The mode of SwanLab."},
    )
    swanlab_api_key: str = field(
        default=None,
        metadata={"help": "The API key for SwanLab."},
    )


@dataclass
class FinetuningArguments(
    FreezeArguments, LoraArguments, RLHFArguments, GaloreArguments, ApolloArguments, BAdamArgument, SwanLabArguments
):
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
392
393
394
395
396
397
398
399
    r"""
    Arguments pertaining to which techniques we are going to fine-tuning with.
    """

    pure_bf16: bool = field(
        default=False,
        metadata={"help": "Whether or not to train model in purely bf16 precision (without AMP)."},
    )
chenych's avatar
chenych committed
400
    stage: Literal["pt", "sft", "rm", "ppo", "dpo", "kto"] = field(
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
401
402
403
404
405
406
407
408
409
410
411
        default="sft",
        metadata={"help": "Which stage will be performed in training."},
    )
    finetuning_type: Literal["lora", "freeze", "full"] = field(
        default="lora",
        metadata={"help": "Which fine-tuning method to use."},
    )
    use_llama_pro: bool = field(
        default=False,
        metadata={"help": "Whether or not to make only the parameters in the expanded blocks trainable."},
    )
chenych's avatar
chenych committed
412
413
414
415
416
417
418
419
    use_adam_mini: bool = field(
        default=False,
        metadata={"help": "Whether or not to use the Adam-mini optimizer."},
    )
    freeze_vision_tower: bool = field(
        default=True,
        metadata={"help": "Whether ot not to freeze vision tower in MLLM training."},
    )
luopl's avatar
luopl committed
420
421
422
423
    freeze_multi_modal_projector: bool = field(
        default=True,
        metadata={"help": "Whether or not to freeze the multi modal projector in MLLM training."},
    )
chenych's avatar
chenych committed
424
425
426
427
428
429
430
431
    train_mm_proj_only: bool = field(
        default=False,
        metadata={"help": "Whether or not to train the multimodal projector for MLLM only."},
    )
    compute_accuracy: bool = field(
        default=False,
        metadata={"help": "Whether or not to compute the token-level accuracy at evaluation."},
    )
luopl's avatar
luopl committed
432
433
434
435
    disable_shuffling: bool = field(
        default=False,
        metadata={"help": "Whether or not to disable the shuffling of the training set."},
    )
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
436
437
438
439
    plot_loss: bool = field(
        default=False,
        metadata={"help": "Whether or not to save the training loss curves."},
    )
luopl's avatar
luopl committed
440
441
442
443
    include_effective_tokens_per_second: bool = field(
        default=False,
        metadata={"help": "Whether or not to compute effective tokens per second."},
    )
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
444
445
446
447
448
449
450

    def __post_init__(self):
        def split_arg(arg):
            if isinstance(arg, str):
                return [item.strip() for item in arg.split(",")]
            return arg

chenych's avatar
chenych committed
451
452
453
454
455
456
        self.freeze_trainable_modules: List[str] = split_arg(self.freeze_trainable_modules)
        self.freeze_extra_modules: Optional[List[str]] = split_arg(self.freeze_extra_modules)
        self.lora_alpha: int = self.lora_alpha or self.lora_rank * 2
        self.lora_target: List[str] = split_arg(self.lora_target)
        self.additional_target: Optional[List[str]] = split_arg(self.additional_target)
        self.galore_target: List[str] = split_arg(self.galore_target)
luopl's avatar
luopl committed
457
        self.apollo_target: List[str] = split_arg(self.apollo_target)
chenych's avatar
chenych committed
458
        self.freeze_vision_tower = self.freeze_vision_tower or self.train_mm_proj_only
luopl's avatar
luopl committed
459
        self.freeze_multi_modal_projector = self.freeze_multi_modal_projector and not self.train_mm_proj_only
chenych's avatar
chenych committed
460
        self.use_ref_model = self.stage == "dpo" and self.pref_loss not in ["orpo", "simpo"]
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
461
462
463
464
465
466
467
468
469
470
471

        assert self.finetuning_type in ["lora", "freeze", "full"], "Invalid fine-tuning method."
        assert self.ref_model_quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization."
        assert self.reward_model_quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization."

        if self.stage == "ppo" and self.reward_model is None:
            raise ValueError("`reward_model` is necessary for PPO training.")

        if self.stage == "ppo" and self.reward_model_type == "lora" and self.finetuning_type != "lora":
            raise ValueError("`reward_model_type` cannot be lora for Freeze/Full PPO training.")

chenych's avatar
chenych committed
472
        if self.stage == "dpo" and self.pref_loss != "sigmoid" and self.dpo_label_smoothing > 1e-6:
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
473
474
475
            raise ValueError("`dpo_label_smoothing` is only valid for sigmoid loss function.")

        if self.use_llama_pro and self.finetuning_type == "full":
chenych's avatar
chenych committed
476
477
            raise ValueError("`use_llama_pro` is only valid for Freeze or LoRA training.")

luopl's avatar
luopl committed
478
479
        if self.finetuning_type == "lora" and (self.use_galore or self.use_apollo or self.use_badam):
            raise ValueError("Cannot use LoRA with GaLore, APOLLO or BAdam together.")
chenych's avatar
chenych committed
480

luopl's avatar
luopl committed
481
482
        if int(self.use_galore) + int(self.use_apollo) + (self.use_badam) > 1:
            raise ValueError("Cannot use GaLore, APOLLO or BAdam together.")
chenych's avatar
chenych committed
483
484
485

        if self.pissa_init and (self.stage in ["ppo", "kto"] or self.use_ref_model):
            raise ValueError("Cannot use PiSSA for current training stage.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
486

chenych's avatar
chenych committed
487
488
        if self.train_mm_proj_only and self.finetuning_type != "full":
            raise ValueError("`train_mm_proj_only` is only valid for full training.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
489

chenych's avatar
chenych committed
490
491
492
        if self.finetuning_type != "lora":
            if self.loraplus_lr_ratio is not None:
                raise ValueError("`loraplus_lr_ratio` is only valid for LoRA training.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
493

chenych's avatar
chenych committed
494
495
            if self.use_rslora:
                raise ValueError("`use_rslora` is only valid for LoRA training.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
496

chenych's avatar
chenych committed
497
498
            if self.use_dora:
                raise ValueError("`use_dora` is only valid for LoRA training.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
499

chenych's avatar
chenych committed
500
501
            if self.pissa_init:
                raise ValueError("`pissa_init` is only valid for LoRA training.")
luopl's avatar
luopl committed
502
503
504
505
506

    def to_dict(self) -> Dict[str, Any]:
        args = asdict(self)
        args = {k: f"<{k.upper()}>" if k.endswith("api_key") else v for k, v in args.items()}
        return args