utils.py 3.05 KB
Newer Older
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
1
from enum import Enum, unique
chenych's avatar
chenych committed
2
from typing import TYPE_CHECKING, Dict, List, Tuple, Union
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
3
4
5
6
7
8
9
10
11
12

from datasets import concatenate_datasets, interleave_datasets

from ..extras.logging import get_logger


if TYPE_CHECKING:
    from datasets import Dataset, IterableDataset
    from transformers import Seq2SeqTrainingArguments

chenych's avatar
chenych committed
13
    from ..hparams import DataArguments
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64


logger = get_logger(__name__)


@unique
class Role(str, Enum):
    USER = "user"
    ASSISTANT = "assistant"
    SYSTEM = "system"
    FUNCTION = "function"
    OBSERVATION = "observation"


def infer_max_len(source_len: int, target_len: int, max_len: int, reserved_label_len: int) -> Tuple[int, int]:
    max_target_len = int(max_len * (target_len / (source_len + target_len)))
    max_target_len = max(max_target_len, reserved_label_len)
    max_source_len = max_len - min(max_target_len, target_len)
    return max_source_len, max_target_len


def merge_dataset(
    all_datasets: List[Union["Dataset", "IterableDataset"]],
    data_args: "DataArguments",
    training_args: "Seq2SeqTrainingArguments",
) -> Union["Dataset", "IterableDataset"]:
    if len(all_datasets) == 1:
        return all_datasets[0]
    elif data_args.mix_strategy == "concat":
        if data_args.streaming:
            logger.warning("The samples between different datasets will not be mixed in streaming mode.")
        return concatenate_datasets(all_datasets)
    elif data_args.mix_strategy.startswith("interleave"):
        if not data_args.streaming:
            logger.warning("We recommend using `mix_strategy=concat` in non-streaming mode.")
        return interleave_datasets(
            datasets=all_datasets,
            probabilities=data_args.interleave_probs,
            seed=training_args.seed,
            stopping_strategy="first_exhausted" if data_args.mix_strategy.endswith("under") else "all_exhausted",
        )
    else:
        raise ValueError("Unknown mixing strategy.")


def split_dataset(
    dataset: Union["Dataset", "IterableDataset"], data_args: "DataArguments", training_args: "Seq2SeqTrainingArguments"
) -> Dict[str, "Dataset"]:
    if training_args.do_train:
        if data_args.val_size > 1e-6:  # Split the dataset
            if data_args.streaming:
chenych's avatar
chenych committed
65
                dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=training_args.seed)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
66
67
68
69
70
71
72
73
74
75
76
77
78
                val_set = dataset.take(int(data_args.val_size))
                train_set = dataset.skip(int(data_args.val_size))
                return {"train_dataset": train_set, "eval_dataset": val_set}
            else:
                val_size = int(data_args.val_size) if data_args.val_size > 1 else data_args.val_size
                dataset = dataset.train_test_split(test_size=val_size, seed=training_args.seed)
                return {"train_dataset": dataset["train"], "eval_dataset": dataset["test"]}
        else:
            if data_args.streaming:
                dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=training_args.seed)
            return {"train_dataset": dataset}
    else:  # do_eval or do_predict
        return {"eval_dataset": dataset}