test_supervised.py 4.28 KB
Newer Older
chenych's avatar
chenych committed
1
# Copyright 2025 the LlamaFactory team.
chenych's avatar
chenych committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import random

import pytest
from datasets import load_dataset
from transformers import AutoTokenizer

from llamafactory.extras.constants import IGNORE_INDEX
from llamafactory.train.test_utils import load_train_dataset


luopl's avatar
luopl committed
26
DEMO_DATA = os.getenv("DEMO_DATA", "llamafactory/demo_data")
chenych's avatar
chenych committed
27

luopl's avatar
luopl committed
28
TINY_LLAMA = os.getenv("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
chenych's avatar
chenych committed
29

luopl's avatar
luopl committed
30
TINY_DATA = os.getenv("TINY_DATA", "llamafactory/tiny-supervised-dataset")
chenych's avatar
chenych committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

TRAIN_ARGS = {
    "model_name_or_path": TINY_LLAMA,
    "stage": "sft",
    "do_train": True,
    "finetuning_type": "full",
    "template": "llama3",
    "cutoff_len": 8192,
    "overwrite_cache": True,
    "output_dir": "dummy_dir",
    "overwrite_output_dir": True,
    "fp16": True,
}


@pytest.mark.parametrize("num_samples", [16])
def test_supervised_single_turn(num_samples: int):
    train_dataset = load_train_dataset(dataset_dir="ONLINE", dataset=TINY_DATA, **TRAIN_ARGS)
    ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
    original_data = load_dataset(TINY_DATA, split="train")
    indexes = random.choices(range(len(original_data)), k=num_samples)
    for index in indexes:
        prompt = original_data["instruction"][index]
        if original_data["input"][index]:
            prompt += "\n" + original_data["input"][index]

        messages = [
            {"role": "user", "content": prompt},
            {"role": "assistant", "content": original_data["output"][index]},
        ]
        ref_input_ids = ref_tokenizer.apply_chat_template(messages)
        assert train_dataset["input_ids"][index] == ref_input_ids


@pytest.mark.parametrize("num_samples", [8])
def test_supervised_multi_turn(num_samples: int):
    train_dataset = load_train_dataset(dataset_dir="REMOTE:" + DEMO_DATA, dataset="system_chat", **TRAIN_ARGS)
    ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
    original_data = load_dataset(DEMO_DATA, name="system_chat", split="train")
    indexes = random.choices(range(len(original_data)), k=num_samples)
    for index in indexes:
        ref_input_ids = ref_tokenizer.apply_chat_template(original_data["messages"][index])
        assert train_dataset["input_ids"][index] == ref_input_ids


@pytest.mark.parametrize("num_samples", [4])
def test_supervised_train_on_prompt(num_samples: int):
    train_dataset = load_train_dataset(
        dataset_dir="REMOTE:" + DEMO_DATA, dataset="system_chat", train_on_prompt=True, **TRAIN_ARGS
    )
    ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
    original_data = load_dataset(DEMO_DATA, name="system_chat", split="train")
    indexes = random.choices(range(len(original_data)), k=num_samples)
    for index in indexes:
        ref_ids = ref_tokenizer.apply_chat_template(original_data["messages"][index])
        assert train_dataset["input_ids"][index] == ref_ids
        assert train_dataset["labels"][index] == ref_ids


@pytest.mark.parametrize("num_samples", [4])
def test_supervised_mask_history(num_samples: int):
    train_dataset = load_train_dataset(
        dataset_dir="REMOTE:" + DEMO_DATA, dataset="system_chat", mask_history=True, **TRAIN_ARGS
    )
    ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
    original_data = load_dataset(DEMO_DATA, name="system_chat", split="train")
    indexes = random.choices(range(len(original_data)), k=num_samples)
    for index in indexes:
        messages = original_data["messages"][index]
        ref_input_ids = ref_tokenizer.apply_chat_template(messages)
        prompt_len = len(ref_tokenizer.apply_chat_template(messages[:-1], add_generation_prompt=True))
        ref_label_ids = [IGNORE_INDEX] * prompt_len + ref_input_ids[prompt_len:]
        assert train_dataset["input_ids"][index] == ref_input_ids
        assert train_dataset["labels"][index] == ref_label_ids