vllm_infer.py 5.68 KB
Newer Older
chenych's avatar
chenych committed
1
# Copyright 2025 the LlamaFactory team.
luopl's avatar
luopl committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
chenych's avatar
chenych committed
16
from typing import Optional
luopl's avatar
luopl committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

import fire
from transformers import Seq2SeqTrainingArguments

from llamafactory.data import get_dataset, get_template_and_fix_tokenizer
from llamafactory.extras.constants import IGNORE_INDEX
from llamafactory.extras.misc import check_version, get_device_count
from llamafactory.extras.packages import is_vllm_available
from llamafactory.hparams import get_infer_args
from llamafactory.model import load_tokenizer


if is_vllm_available():
    from vllm import LLM, SamplingParams
    from vllm.lora.request import LoRARequest


def vllm_infer(
    model_name_or_path: str,
    adapter_name_or_path: str = None,
    dataset: str = "alpaca_en_demo",
    dataset_dir: str = "data",
    template: str = "default",
    cutoff_len: int = 2048,
    max_samples: int = None,
    vllm_config: str = "{}",
    save_name: str = "generated_predictions.jsonl",
    temperature: float = 0.95,
    top_p: float = 0.7,
    top_k: int = 50,
    max_new_tokens: int = 1024,
    repetition_penalty: float = 1.0,
chenych's avatar
chenych committed
49
    seed: Optional[int] = None,
luopl's avatar
luopl committed
50
    pipeline_parallel_size: int = 1,
chenych's avatar
chenych committed
51
52
    image_max_pixels: int = 768 * 768,
    image_min_pixels: int = 32 * 32,
luopl's avatar
luopl committed
53
54
55
56
57
):
    r"""
    Performs batch generation using vLLM engine, which supports tensor parallelism.
    Usage: python vllm_infer.py --model_name_or_path meta-llama/Llama-2-7b-hf --template llama --dataset alpaca_en_demo
    """
chenych's avatar
chenych committed
58
    check_version("vllm>=0.4.3,<=0.7.3")
luopl's avatar
luopl committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
    if pipeline_parallel_size > get_device_count():
        raise ValueError("Pipeline parallel size should be smaller than the number of gpus.")

    model_args, data_args, _, generating_args = get_infer_args(
        dict(
            model_name_or_path=model_name_or_path,
            adapter_name_or_path=adapter_name_or_path,
            dataset=dataset,
            dataset_dir=dataset_dir,
            template=template,
            cutoff_len=cutoff_len,
            max_samples=max_samples,
            preprocessing_num_workers=16,
            vllm_config=vllm_config,
            temperature=temperature,
            top_p=top_p,
            top_k=top_k,
            max_new_tokens=max_new_tokens,
            repetition_penalty=repetition_penalty,
        )
    )

    training_args = Seq2SeqTrainingArguments(output_dir="dummy_dir")
    tokenizer_module = load_tokenizer(model_args)
    tokenizer = tokenizer_module["tokenizer"]
    template_obj = get_template_and_fix_tokenizer(tokenizer, data_args)
    template_obj.mm_plugin.expand_mm_tokens = False  # for vllm generate
    dataset_module = get_dataset(template_obj, model_args, data_args, training_args, "ppo", **tokenizer_module)

    inputs, prompts, labels = [], [], []
    for sample in dataset_module["train_dataset"]:
        if sample["images"]:
            multi_modal_data = {
chenych's avatar
chenych committed
92
93
94
                "image": template_obj.mm_plugin._regularize_images(
                    sample["images"], image_max_pixels=image_max_pixels, image_min_pixels=image_min_pixels
                )
luopl's avatar
luopl committed
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
            }
        else:
            multi_modal_data = None

        inputs.append({"prompt_token_ids": sample["input_ids"], "multi_modal_data": multi_modal_data})
        prompts.append(tokenizer.decode(sample["input_ids"], skip_special_tokens=False))
        labels.append(
            tokenizer.decode(list(filter(lambda x: x != IGNORE_INDEX, sample["labels"])), skip_special_tokens=False)
        )

    sampling_params = SamplingParams(
        repetition_penalty=generating_args.repetition_penalty or 1.0,  # repetition_penalty must > 0
        temperature=generating_args.temperature,
        top_p=generating_args.top_p or 1.0,  # top_p must > 0
        top_k=generating_args.top_k,
        stop_token_ids=template_obj.get_stop_token_ids(tokenizer),
        max_tokens=generating_args.max_new_tokens,
        skip_special_tokens=False,
chenych's avatar
chenych committed
113
        seed=seed,
luopl's avatar
luopl committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
    )
    if model_args.adapter_name_or_path is not None:
        lora_request = LoRARequest("default", 1, model_args.adapter_name_or_path[0])
    else:
        lora_request = None

    engine_args = {
        "model": model_args.model_name_or_path,
        "trust_remote_code": True,
        "dtype": model_args.infer_dtype,
        "tensor_parallel_size": (get_device_count() // pipeline_parallel_size) or 1,
        "pipeline_parallel_size": pipeline_parallel_size,
        "disable_log_stats": True,
        "enable_lora": model_args.adapter_name_or_path is not None,
    }
    if template_obj.mm_plugin.__class__.__name__ != "BasePlugin":
        engine_args["limit_mm_per_prompt"] = {"image": 4, "video": 2}

    if isinstance(model_args.vllm_config, dict):
        engine_args.update(model_args.vllm_config)

    results = LLM(**engine_args).generate(inputs, sampling_params, lora_request=lora_request)
    preds = [result.outputs[0].text for result in results]
    with open(save_name, "w", encoding="utf-8") as f:
        for text, pred, label in zip(prompts, preds, labels):
            f.write(json.dumps({"prompt": text, "predict": pred, "label": label}, ensure_ascii=False) + "\n")

    print("*" * 70)
    print(f"{len(prompts)} generated results have been saved at {save_name}.")
    print("*" * 70)


if __name__ == "__main__":
    fire.Fire(vllm_infer)