README.md 6.01 KB
Newer Older
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
1
2
We provide diverse examples about fine-tuning LLMs.

chenych's avatar
chenych committed
3
4
5
6
7
8
9
10
11
12
13
14
15
Make sure to execute these commands in the `LLaMA-Factory` directory.

## Table of Contents

- [LoRA Fine-Tuning](#lora-fine-tuning)
- [QLoRA Fine-Tuning](#qlora-fine-tuning)
- [Full-Parameter Fine-Tuning](#full-parameter-fine-tuning)
- [Merging LoRA Adapters and Quantization](#merging-lora-adapters-and-quantization)
- [Inferring LoRA Fine-Tuned Models](#inferring-lora-fine-tuned-models)
- [Extras](#extras)

Use `CUDA_VISIBLE_DEVICES` (GPU) or `ASCEND_RT_VISIBLE_DEVICES` (NPU) to choose computing devices.

luopl's avatar
luopl committed
16
17
By default, LLaMA-Factory uses all visible computing devices.

chenych's avatar
chenych committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
## Examples

### LoRA Fine-Tuning

#### (Continuous) Pre-Training

```bash
llamafactory-cli train examples/train_lora/llama3_lora_pretrain.yaml
```

#### Supervised Fine-Tuning

```bash
llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
```

#### Multimodal Supervised Fine-Tuning

```bash
llamafactory-cli train examples/train_lora/llava1_5_lora_sft.yaml
luopl's avatar
luopl committed
38
llamafactory-cli train examples/train_lora/qwen2vl_lora_sft.yaml
chenych's avatar
chenych committed
39
40
```

luopl's avatar
luopl committed
41
#### DPO/ORPO/SimPO Training
chenych's avatar
chenych committed
42
43

```bash
luopl's avatar
luopl committed
44
llamafactory-cli train examples/train_lora/llama3_lora_dpo.yaml
chenych's avatar
chenych committed
45
46
```

luopl's avatar
luopl committed
47
#### Multimodal DPO/ORPO/SimPO Training
chenych's avatar
chenych committed
48
49

```bash
luopl's avatar
luopl committed
50
llamafactory-cli train examples/train_lora/qwen2vl_lora_dpo.yaml
chenych's avatar
chenych committed
51
52
```

luopl's avatar
luopl committed
53
#### Reward Modeling
chenych's avatar
chenych committed
54
55

```bash
luopl's avatar
luopl committed
56
57
58
59
60
61
62
llamafactory-cli train examples/train_lora/llama3_lora_reward.yaml
```

#### PPO Training

```bash
llamafactory-cli train examples/train_lora/llama3_lora_ppo.yaml
chenych's avatar
chenych committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
```

#### KTO Training

```bash
llamafactory-cli train examples/train_lora/llama3_lora_kto.yaml
```

#### Preprocess Dataset

It is useful for large dataset, use `tokenized_path` in config to load the preprocessed dataset.

```bash
llamafactory-cli train examples/train_lora/llama3_preprocess.yaml
```

#### Evaluating on MMLU/CMMLU/C-Eval Benchmarks

```bash
llamafactory-cli eval examples/train_lora/llama3_lora_eval.yaml
```

#### Supervised Fine-Tuning on Multiple Nodes

```bash
luopl's avatar
luopl committed
88
89
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
chenych's avatar
chenych committed
90
91
92
93
94
95
96
97
```

#### Supervised Fine-Tuning with DeepSpeed ZeRO-3 (Weight Sharding)

```bash
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ds3.yaml
```

luopl's avatar
luopl committed
98
99
100
#### Supervised Fine-Tuning with Ray on 4 GPUs

```bash
chenych's avatar
chenych committed
101
USE_RAY=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ray.yaml
luopl's avatar
luopl committed
102
103
```

chenych's avatar
chenych committed
104
105
106
107
108
109
110
111
### QLoRA Fine-Tuning

#### Supervised Fine-Tuning with 4/8-bit Bitsandbytes/HQQ/EETQ Quantization (Recommended)

```bash
llamafactory-cli train examples/train_qlora/llama3_lora_sft_otfq.yaml
```

luopl's avatar
luopl committed
112
113
114
115
116
117
#### Supervised Fine-Tuning with 4-bit Bitsandbytes Quantization on Ascend NPU

```bash
llamafactory-cli train examples/train_qlora/llama3_lora_sft_bnb_npu.yaml
```

chenych's avatar
chenych committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#### Supervised Fine-Tuning with 4/8-bit GPTQ Quantization

```bash
llamafactory-cli train examples/train_qlora/llama3_lora_sft_gptq.yaml
```

#### Supervised Fine-Tuning with 4-bit AWQ Quantization

```bash
llamafactory-cli train examples/train_qlora/llama3_lora_sft_awq.yaml
```

#### Supervised Fine-Tuning with 2-bit AQLM Quantization

```bash
llamafactory-cli train examples/train_qlora/llama3_lora_sft_aqlm.yaml
```

### Full-Parameter Fine-Tuning

#### Supervised Fine-Tuning on Single Node

```bash
luopl's avatar
luopl committed
141
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
chenych's avatar
chenych committed
142
143
144
145
146
```

#### Supervised Fine-Tuning on Multiple Nodes

```bash
luopl's avatar
luopl committed
147
148
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
chenych's avatar
chenych committed
149
150
```

luopl's avatar
luopl committed
151
152
153
154
155
156
#### Multimodal Supervised Fine-Tuning

```bash
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/qwen2vl_full_sft.yaml
```

chenych's avatar
chenych committed
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
### Merging LoRA Adapters and Quantization

#### Merge LoRA Adapters

Note: DO NOT use quantized model or `quantization_bit` when merging LoRA adapters.

```bash
llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
```

#### Quantizing Model using AutoGPTQ

```bash
llamafactory-cli export examples/merge_lora/llama3_gptq.yaml
```

chenych's avatar
chenych committed
173
174
175
176
177
178
### Save Ollama modelfile

```bash
llamafactory-cli export examples/merge_lora/llama3_full_sft.yaml
```

chenych's avatar
chenych committed
179
180
### Inferring LoRA Fine-Tuned Models

luopl's avatar
luopl committed
181
182
183
184
185
186
187
#### Batch Generation using vLLM Tensor Parallel

```
python scripts/vllm_infer.py --model_name_or_path path_to_merged_model --dataset alpaca_en_demo
```

#### Use CLI ChatBox
chenych's avatar
chenych committed
188
189
190
191
192

```bash
llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
```

luopl's avatar
luopl committed
193
#### Use Web UI ChatBox
chenych's avatar
chenych committed
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

```bash
llamafactory-cli webchat examples/inference/llama3_lora_sft.yaml
```

#### Launch OpenAI-style API

```bash
llamafactory-cli api examples/inference/llama3_lora_sft.yaml
```

### Extras

#### Full-Parameter Fine-Tuning using GaLore

```bash
llamafactory-cli train examples/extras/galore/llama3_full_sft.yaml
```

luopl's avatar
luopl committed
213
214
215
216
217
218
#### Full-Parameter Fine-Tuning using APOLLO

```bash
llamafactory-cli train examples/extras/apollo/llama3_full_sft.yaml
```

chenych's avatar
chenych committed
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
#### Full-Parameter Fine-Tuning using BAdam

```bash
llamafactory-cli train examples/extras/badam/llama3_full_sft.yaml
```

#### Full-Parameter Fine-Tuning using Adam-mini

```bash
llamafactory-cli train examples/extras/adam_mini/qwen2_full_sft.yaml
```

#### LoRA+ Fine-Tuning

```bash
llamafactory-cli train examples/extras/loraplus/llama3_lora_sft.yaml
```

#### PiSSA Fine-Tuning

```bash
llamafactory-cli train examples/extras/pissa/llama3_lora_sft.yaml
```

#### Mixture-of-Depths Fine-Tuning

```bash
llamafactory-cli train examples/extras/mod/llama3_full_sft.yaml
```

#### LLaMA-Pro Fine-Tuning

```bash
bash examples/extras/llama_pro/expand.sh
llamafactory-cli train examples/extras/llama_pro/llama3_freeze_sft.yaml
```

#### FSDP+QLoRA Fine-Tuning

```bash
bash examples/extras/fsdp_qlora/train.sh
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
260
```
luopl's avatar
luopl committed
261
262
263
264
265
266

#### Computing BLEU and ROUGE Scores

```bash
llamafactory-cli train examples/extras/nlg_eval/llama3_lora_predict.yaml
```