runner.py 19 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
15
import os
chenych's avatar
chenych committed
16
17
18
from copy import deepcopy
from subprocess import Popen, TimeoutExpired
from typing import TYPE_CHECKING, Any, Dict, Generator, Optional
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
19
20
21

from transformers.trainer import TRAINING_ARGS_NAME

chenych's avatar
chenych committed
22
23
from ..extras.constants import LLAMABOARD_CONFIG, PEFT_METHODS, TRAINING_STAGES
from ..extras.misc import is_gpu_or_npu_available, torch_gc
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
24
from ..extras.packages import is_gradio_available
chenych's avatar
chenych committed
25
26
27
from .common import DEFAULT_CACHE_DIR, DEFAULT_CONFIG_DIR, QUANTIZATION_BITS, get_save_dir, load_config
from .locales import ALERTS, LOCALES
from .utils import abort_process, gen_cmd, get_eval_results, get_trainer_info, load_args, save_args, save_cmd
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44


if is_gradio_available():
    import gradio as gr


if TYPE_CHECKING:
    from gradio.components import Component

    from .manager import Manager


class Runner:
    def __init__(self, manager: "Manager", demo_mode: bool = False) -> None:
        self.manager = manager
        self.demo_mode = demo_mode
        """ Resume """
chenych's avatar
chenych committed
45
        self.trainer: Optional["Popen"] = None
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
46
47
48
49
50
51
52
53
        self.do_train = True
        self.running_data: Dict["Component", Any] = None
        """ State """
        self.aborted = False
        self.running = False

    def set_abort(self) -> None:
        self.aborted = True
chenych's avatar
chenych committed
54
55
        if self.trainer is not None:
            abort_process(self.trainer.pid)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

    def _initialize(self, data: Dict["Component", Any], do_train: bool, from_preview: bool) -> str:
        get = lambda elem_id: data[self.manager.get_elem_by_id(elem_id)]
        lang, model_name, model_path = get("top.lang"), get("top.model_name"), get("top.model_path")
        dataset = get("train.dataset") if do_train else get("eval.dataset")

        if self.running:
            return ALERTS["err_conflict"][lang]

        if not model_name:
            return ALERTS["err_no_model"][lang]

        if not model_path:
            return ALERTS["err_no_path"][lang]

chenych's avatar
chenych committed
71
        if not dataset:
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
72
73
74
75
76
77
            return ALERTS["err_no_dataset"][lang]

        if not from_preview and self.demo_mode:
            return ALERTS["err_demo"][lang]

        if do_train:
chenych's avatar
chenych committed
78
79
80
            if not get("train.output_dir"):
                return ALERTS["err_no_output_dir"][lang]

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
81
            stage = TRAINING_STAGES[get("train.training_stage")]
chenych's avatar
chenych committed
82
            if stage == "ppo" and not get("train.reward_model"):
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
83
                return ALERTS["err_no_reward_model"][lang]
chenych's avatar
chenych committed
84
85
86
        else:
            if not get("eval.output_dir"):
                return ALERTS["err_no_output_dir"][lang]
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
87

chenych's avatar
chenych committed
88
        if not from_preview and not is_gpu_or_npu_available():
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
89
90
91
92
93
94
            gr.Warning(ALERTS["warn_no_cuda"][lang])

        return ""

    def _finalize(self, lang: str, finish_info: str) -> str:
        finish_info = ALERTS["info_aborted"][lang] if self.aborted else finish_info
chenych's avatar
chenych committed
95
        self.trainer = None
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
96
97
98
99
100
101
102
103
        self.aborted = False
        self.running = False
        self.running_data = None
        torch_gc()
        return finish_info

    def _parse_train_args(self, data: Dict["Component", Any]) -> Dict[str, Any]:
        get = lambda elem_id: data[self.manager.get_elem_by_id(elem_id)]
chenych's avatar
chenych committed
104
        model_name, finetuning_type = get("top.model_name"), get("top.finetuning_type")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
105
106
107
108
109
110
111
        user_config = load_config()

        args = dict(
            stage=TRAINING_STAGES[get("train.training_stage")],
            do_train=True,
            model_name_or_path=get("top.model_path"),
            cache_dir=user_config.get("cache_dir", None),
chenych's avatar
chenych committed
112
113
            preprocessing_num_workers=16,
            finetuning_type=finetuning_type,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
114
115
            template=get("top.template"),
            rope_scaling=get("top.rope_scaling") if get("top.rope_scaling") in ["linear", "dynamic"] else None,
chenych's avatar
chenych committed
116
            flash_attn="fa2" if get("top.booster") == "flashattn2" else "auto",
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
117
            use_unsloth=(get("top.booster") == "unsloth"),
luopl's avatar
luopl committed
118
            enable_liger_kernel=(get("top.booster") == "liger_kernel"),
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
            dataset_dir=get("train.dataset_dir"),
            dataset=",".join(get("train.dataset")),
            cutoff_len=get("train.cutoff_len"),
            learning_rate=float(get("train.learning_rate")),
            num_train_epochs=float(get("train.num_train_epochs")),
            max_samples=int(get("train.max_samples")),
            per_device_train_batch_size=get("train.batch_size"),
            gradient_accumulation_steps=get("train.gradient_accumulation_steps"),
            lr_scheduler_type=get("train.lr_scheduler_type"),
            max_grad_norm=float(get("train.max_grad_norm")),
            logging_steps=get("train.logging_steps"),
            save_steps=get("train.save_steps"),
            warmup_steps=get("train.warmup_steps"),
            neftune_noise_alpha=get("train.neftune_alpha") or None,
            optim=get("train.optim"),
chenych's avatar
chenych committed
134
135
136
137
            packing=get("train.packing") or get("train.neat_packing"),
            neat_packing=get("train.neat_packing"),
            train_on_prompt=get("train.train_on_prompt"),
            mask_history=get("train.mask_history"),
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
138
139
140
141
142
            resize_vocab=get("train.resize_vocab"),
            use_llama_pro=get("train.use_llama_pro"),
            shift_attn=get("train.shift_attn"),
            report_to="all" if get("train.report_to") else "none",
            use_galore=get("train.use_galore"),
chenych's avatar
chenych committed
143
144
            use_badam=get("train.use_badam"),
            output_dir=get_save_dir(model_name, finetuning_type, get("train.output_dir")),
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
145
146
147
            fp16=(get("train.compute_type") == "fp16"),
            bf16=(get("train.compute_type") == "bf16"),
            pure_bf16=(get("train.compute_type") == "pure_bf16"),
chenych's avatar
chenych committed
148
149
150
            plot_loss=True,
            ddp_timeout=180000000,
            include_num_input_tokens_seen=True,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
151
152
        )

chenych's avatar
chenych committed
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
        # checkpoints
        if get("top.checkpoint_path"):
            if finetuning_type in PEFT_METHODS:  # list
                args["adapter_name_or_path"] = ",".join(
                    [get_save_dir(model_name, finetuning_type, adapter) for adapter in get("top.checkpoint_path")]
                )
            else:  # str
                args["model_name_or_path"] = get_save_dir(model_name, finetuning_type, get("top.checkpoint_path"))

        # quantization
        if get("top.quantization_bit") in QUANTIZATION_BITS:
            args["quantization_bit"] = int(get("top.quantization_bit"))
            args["quantization_method"] = get("top.quantization_method")

        # freeze config
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
168
        if args["finetuning_type"] == "freeze":
chenych's avatar
chenych committed
169
170
171
172
173
174
            args["freeze_trainable_layers"] = get("train.freeze_trainable_layers")
            args["freeze_trainable_modules"] = get("train.freeze_trainable_modules")
            args["freeze_extra_modules"] = get("train.freeze_extra_modules") or None

        # lora config
        if args["finetuning_type"] == "lora":
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
175
176
177
178
179
180
181
            args["lora_rank"] = get("train.lora_rank")
            args["lora_alpha"] = get("train.lora_alpha")
            args["lora_dropout"] = get("train.lora_dropout")
            args["loraplus_lr_ratio"] = get("train.loraplus_lr_ratio") or None
            args["create_new_adapter"] = get("train.create_new_adapter")
            args["use_rslora"] = get("train.use_rslora")
            args["use_dora"] = get("train.use_dora")
chenych's avatar
chenych committed
182
183
184
            args["pissa_init"] = get("train.use_pissa")
            args["pissa_convert"] = get("train.use_pissa")
            args["lora_target"] = get("train.lora_target") or "all"
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
185
186
187
            args["additional_target"] = get("train.additional_target") or None

            if args["use_llama_pro"]:
chenych's avatar
chenych committed
188
                args["freeze_trainable_layers"] = get("train.freeze_trainable_layers")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
189

chenych's avatar
chenych committed
190
        # rlhf config
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
191
        if args["stage"] == "ppo":
chenych's avatar
chenych committed
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
            if finetuning_type in PEFT_METHODS:
                args["reward_model"] = ",".join(
                    [get_save_dir(model_name, finetuning_type, adapter) for adapter in get("train.reward_model")]
                )
            else:
                args["reward_model"] = get_save_dir(model_name, finetuning_type, get("train.reward_model"))

            args["reward_model_type"] = "lora" if finetuning_type == "lora" else "full"
            args["ppo_score_norm"] = get("train.ppo_score_norm")
            args["ppo_whiten_rewards"] = get("train.ppo_whiten_rewards")
            args["top_k"] = 0
            args["top_p"] = 0.9
        elif args["stage"] in ["dpo", "kto"]:
            args["pref_beta"] = get("train.pref_beta")
            args["pref_ftx"] = get("train.pref_ftx")
            args["pref_loss"] = get("train.pref_loss")

        # galore config
        if args["use_galore"]:
            args["galore_rank"] = get("train.galore_rank")
            args["galore_update_interval"] = get("train.galore_update_interval")
            args["galore_scale"] = get("train.galore_scale")
            args["galore_target"] = get("train.galore_target")

        # badam config
        if args["use_badam"]:
            args["badam_mode"] = get("train.badam_mode")
            args["badam_switch_mode"] = get("train.badam_switch_mode")
            args["badam_switch_interval"] = get("train.badam_switch_interval")
            args["badam_update_ratio"] = get("train.badam_update_ratio")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
222

chenych's avatar
chenych committed
223
        # eval config
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
224
225
        if get("train.val_size") > 1e-6 and args["stage"] != "ppo":
            args["val_size"] = get("train.val_size")
chenych's avatar
chenych committed
226
            args["eval_strategy"] = "steps"
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
227
228
229
            args["eval_steps"] = args["save_steps"]
            args["per_device_eval_batch_size"] = args["per_device_train_batch_size"]

chenych's avatar
chenych committed
230
231
232
233
234
        # ds config
        if get("train.ds_stage") != "none":
            ds_stage = get("train.ds_stage")
            ds_offload = "offload_" if get("train.ds_offload") else ""
            args["deepspeed"] = os.path.join(DEFAULT_CACHE_DIR, "ds_z{}_{}config.json".format(ds_stage, ds_offload))
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
235
236
237
238
239

        return args

    def _parse_eval_args(self, data: Dict["Component", Any]) -> Dict[str, Any]:
        get = lambda elem_id: data[self.manager.get_elem_by_id(elem_id)]
chenych's avatar
chenych committed
240
        model_name, finetuning_type = get("top.model_name"), get("top.finetuning_type")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
241
242
243
244
245
246
        user_config = load_config()

        args = dict(
            stage="sft",
            model_name_or_path=get("top.model_path"),
            cache_dir=user_config.get("cache_dir", None),
chenych's avatar
chenych committed
247
248
249
            preprocessing_num_workers=16,
            finetuning_type=finetuning_type,
            quantization_method=get("top.quantization_method"),
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
250
251
            template=get("top.template"),
            rope_scaling=get("top.rope_scaling") if get("top.rope_scaling") in ["linear", "dynamic"] else None,
chenych's avatar
chenych committed
252
            flash_attn="fa2" if get("top.booster") == "flashattn2" else "auto",
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
253
254
            use_unsloth=(get("top.booster") == "unsloth"),
            dataset_dir=get("eval.dataset_dir"),
chenych's avatar
chenych committed
255
            eval_dataset=",".join(get("eval.dataset")),
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
256
257
258
259
260
261
262
            cutoff_len=get("eval.cutoff_len"),
            max_samples=int(get("eval.max_samples")),
            per_device_eval_batch_size=get("eval.batch_size"),
            predict_with_generate=True,
            max_new_tokens=get("eval.max_new_tokens"),
            top_p=get("eval.top_p"),
            temperature=get("eval.temperature"),
chenych's avatar
chenych committed
263
            output_dir=get_save_dir(model_name, finetuning_type, get("eval.output_dir")),
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
264
265
266
267
268
269
270
        )

        if get("eval.predict"):
            args["do_predict"] = True
        else:
            args["do_eval"] = True

chenych's avatar
chenych committed
271
272
273
274
275
276
277
278
279
280
281
282
283
284
        # checkpoints
        if get("top.checkpoint_path"):
            if finetuning_type in PEFT_METHODS:  # list
                args["adapter_name_or_path"] = ",".join(
                    [get_save_dir(model_name, finetuning_type, adapter) for adapter in get("top.checkpoint_path")]
                )
            else:  # str
                args["model_name_or_path"] = get_save_dir(model_name, finetuning_type, get("top.checkpoint_path"))

        # quantization
        if get("top.quantization_bit") in QUANTIZATION_BITS:
            args["quantization_bit"] = int(get("top.quantization_bit"))
            args["quantization_method"] = get("top.quantization_method")

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
        return args

    def _preview(self, data: Dict["Component", Any], do_train: bool) -> Generator[Dict["Component", str], None, None]:
        output_box = self.manager.get_elem_by_id("{}.output_box".format("train" if do_train else "eval"))
        error = self._initialize(data, do_train, from_preview=True)
        if error:
            gr.Warning(error)
            yield {output_box: error}
        else:
            args = self._parse_train_args(data) if do_train else self._parse_eval_args(data)
            yield {output_box: gen_cmd(args)}

    def _launch(self, data: Dict["Component", Any], do_train: bool) -> Generator[Dict["Component", Any], None, None]:
        output_box = self.manager.get_elem_by_id("{}.output_box".format("train" if do_train else "eval"))
        error = self._initialize(data, do_train, from_preview=False)
        if error:
            gr.Warning(error)
            yield {output_box: error}
        else:
            self.do_train, self.running_data = do_train, data
chenych's avatar
chenych committed
305
306
307
308
309
310
311
312
313
314
315
316
            args = self._parse_train_args(data) if do_train else self._parse_eval_args(data)

            os.makedirs(args["output_dir"], exist_ok=True)
            save_args(os.path.join(args["output_dir"], LLAMABOARD_CONFIG), self._form_config_dict(data))

            env = deepcopy(os.environ)
            env["LLAMABOARD_ENABLED"] = "1"
            env["LLAMABOARD_WORKDIR"] = args["output_dir"]
            if args.get("deepspeed", None) is not None:
                env["FORCE_TORCHRUN"] = "1"

            self.trainer = Popen("llamafactory-cli train {}".format(save_cmd(args)), env=env, shell=True)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
317
318
            yield from self.monitor()

chenych's avatar
chenych committed
319
320
321
322
323
324
325
326
327
328
    def _form_config_dict(self, data: Dict["Component", Any]) -> Dict[str, Any]:
        config_dict = {}
        skip_ids = ["top.lang", "top.model_path", "train.output_dir", "train.config_path"]
        for elem, value in data.items():
            elem_id = self.manager.get_id_by_elem(elem)
            if elem_id not in skip_ids:
                config_dict[elem_id] = value

        return config_dict

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
    def preview_train(self, data):
        yield from self._preview(data, do_train=True)

    def preview_eval(self, data):
        yield from self._preview(data, do_train=False)

    def run_train(self, data):
        yield from self._launch(data, do_train=True)

    def run_eval(self, data):
        yield from self._launch(data, do_train=False)

    def monitor(self):
        self.aborted = False
        self.running = True

chenych's avatar
chenych committed
345
346
        get = lambda elem_id: self.running_data[self.manager.get_elem_by_id(elem_id)]
        lang, model_name, finetuning_type = get("top.lang"), get("top.model_name"), get("top.finetuning_type")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
347
348
349
350
        output_dir = get("{}.output_dir".format("train" if self.do_train else "eval"))
        output_path = get_save_dir(model_name, finetuning_type, output_dir)

        output_box = self.manager.get_elem_by_id("{}.output_box".format("train" if self.do_train else "eval"))
chenych's avatar
chenych committed
351
        progress_bar = self.manager.get_elem_by_id("{}.progress_bar".format("train" if self.do_train else "eval"))
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
352
353
        loss_viewer = self.manager.get_elem_by_id("train.loss_viewer") if self.do_train else None

chenych's avatar
chenych committed
354
        while self.trainer is not None:
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
355
356
357
            if self.aborted:
                yield {
                    output_box: ALERTS["info_aborting"][lang],
chenych's avatar
chenych committed
358
                    progress_bar: gr.Slider(visible=False),
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
359
360
                }
            else:
chenych's avatar
chenych committed
361
                running_log, running_progress, running_loss = get_trainer_info(output_path, self.do_train)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
362
                return_dict = {
chenych's avatar
chenych committed
363
364
                    output_box: running_log,
                    progress_bar: running_progress,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
365
                }
chenych's avatar
chenych committed
366
367
                if running_loss is not None:
                    return_dict[loss_viewer] = running_loss
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
368
369
370

                yield return_dict

chenych's avatar
chenych committed
371
372
373
374
375
            try:
                self.trainer.wait(2)
                self.trainer = None
            except TimeoutExpired:
                continue
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
376
377
378
379
380
381
382
383
384
385
386
387
388
389

        if self.do_train:
            if os.path.exists(os.path.join(output_path, TRAINING_ARGS_NAME)):
                finish_info = ALERTS["info_finished"][lang]
            else:
                finish_info = ALERTS["err_failed"][lang]
        else:
            if os.path.exists(os.path.join(output_path, "all_results.json")):
                finish_info = get_eval_results(os.path.join(output_path, "all_results.json"))
            else:
                finish_info = ALERTS["err_failed"][lang]

        return_dict = {
            output_box: self._finalize(lang, finish_info),
chenych's avatar
chenych committed
390
            progress_bar: gr.Slider(visible=False),
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
391
392
393
394
395
396
397
398
399
400
401
402
        }
        yield return_dict

    def save_args(self, data):
        output_box = self.manager.get_elem_by_id("train.output_box")
        error = self._initialize(data, do_train=True, from_preview=True)
        if error:
            gr.Warning(error)
            return {output_box: error}

        lang = data[self.manager.get_elem_by_id("top.lang")]
        config_path = data[self.manager.get_elem_by_id("train.config_path")]
chenych's avatar
chenych committed
403
404
        os.makedirs(DEFAULT_CONFIG_DIR, exist_ok=True)
        save_path = os.path.join(DEFAULT_CONFIG_DIR, config_path)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
405

chenych's avatar
chenych committed
406
        save_args(save_path, self._form_config_dict(data))
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
407
408
409
410
        return {output_box: ALERTS["info_config_saved"][lang] + save_path}

    def load_args(self, lang: str, config_path: str):
        output_box = self.manager.get_elem_by_id("train.output_box")
chenych's avatar
chenych committed
411
        config_dict = load_args(os.path.join(DEFAULT_CONFIG_DIR, config_path))
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
412
413
414
415
416
417
418
419
420
        if config_dict is None:
            gr.Warning(ALERTS["err_config_not_found"][lang])
            return {output_box: ALERTS["err_config_not_found"][lang]}

        output_dict: Dict["Component", Any] = {output_box: ALERTS["info_config_loaded"][lang]}
        for elem_id, value in config_dict.items():
            output_dict[self.manager.get_elem_by_id(elem_id)] = value

        return output_dict
chenych's avatar
chenych committed
421
422
423
424
425
426
427
428
429
430
431
432
433
434

    def check_output_dir(self, lang: str, model_name: str, finetuning_type: str, output_dir: str):
        output_box = self.manager.get_elem_by_id("train.output_box")
        output_dict: Dict["Component", Any] = {output_box: LOCALES["output_box"][lang]["value"]}
        if model_name and output_dir and os.path.isdir(get_save_dir(model_name, finetuning_type, output_dir)):
            gr.Warning(ALERTS["warn_output_dir_exists"][lang])
            output_dict[output_box] = ALERTS["warn_output_dir_exists"][lang]

            output_dir = get_save_dir(model_name, finetuning_type, output_dir)
            config_dict = load_args(os.path.join(output_dir, LLAMABOARD_CONFIG))  # load llamaboard config
            for elem_id, value in config_dict.items():
                output_dict[self.manager.get_elem_by_id(elem_id)] = value

        return output_dict