trainer.py 5.08 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
#
# This code is inspired by the HuggingFace's transformers library.
# https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/trainer.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
18
19
20
21
22
23
24
import json
import os
from types import MethodType
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union

import torch
from transformers import Trainer
luopl's avatar
luopl committed
25
from typing_extensions import override
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
26
27

from ...extras.logging import get_logger
chenych's avatar
chenych committed
28
29
from ..callbacks import FixValueHeadModelCallback, PissaConvertCallback, SaveProcessorCallback
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
30
31
32


if TYPE_CHECKING:
chenych's avatar
chenych committed
33
    from transformers import PreTrainedModel, ProcessorMixin
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
34
35
36
37
38
39
40
41
42
43
44
45
46
    from transformers.trainer import PredictionOutput

    from ...hparams import FinetuningArguments


logger = get_logger(__name__)


class PairwiseTrainer(Trainer):
    r"""
    Inherits Trainer to compute pairwise loss.
    """

chenych's avatar
chenych committed
47
48
49
    def __init__(
        self, finetuning_args: "FinetuningArguments", processor: Optional["ProcessorMixin"], **kwargs
    ) -> None:
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
50
51
52
        super().__init__(**kwargs)
        self.finetuning_args = finetuning_args
        self.can_return_loss = True  # override property to return eval_loss
chenych's avatar
chenych committed
53
54
55
56
57
58
59
60
        self.add_callback(FixValueHeadModelCallback)

        if processor is not None:
            self.add_callback(SaveProcessorCallback(processor))

        if finetuning_args.pissa_convert:
            self.add_callback(PissaConvertCallback)

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
61
        if finetuning_args.use_badam:
chenych's avatar
chenych committed
62
            from badam import BAdamCallback, clip_grad_norm_old_version
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
63

chenych's avatar
chenych committed
64
65
            self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_old_version, self.accelerator)
            self.add_callback(BAdamCallback)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
66

luopl's avatar
luopl committed
67
    @override
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
68
69
    def create_optimizer(self) -> "torch.optim.Optimizer":
        if self.optimizer is None:
chenych's avatar
chenych committed
70
            self.optimizer = create_custom_optimizer(self.model, self.args, self.finetuning_args)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
71
72
        return super().create_optimizer()

luopl's avatar
luopl committed
73
    @override
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
74
75
76
77
78
79
    def create_scheduler(
        self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None
    ) -> "torch.optim.lr_scheduler.LRScheduler":
        create_custom_scheduler(self.args, num_training_steps, optimizer)
        return super().create_scheduler(num_training_steps, optimizer)

luopl's avatar
luopl committed
80
    @override
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
81
    def compute_loss(
luopl's avatar
luopl committed
82
83
        self, model: "PreTrainedModel", inputs: Dict[str, "torch.Tensor"], return_outputs: bool = False
    ) -> Union["torch.Tensor", Tuple["torch.Tensor", List["torch.Tensor"]]]:
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
84
85
86
87
88
89
        r"""
        Computes pairwise loss. The first n examples are chosen and the last n examples are rejected.

        Subclass and override to inject custom behavior.

        Note that the first element will be removed from the output tuple.
chenych's avatar
chenych committed
90
        See: https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/trainer.py#L3842
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
91
        """
chenych's avatar
chenych committed
92
        _, _, values = model(**inputs, output_hidden_states=True, return_dict=True, use_cache=False)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
93
        batch_size = inputs["input_ids"].size(0) // 2
chenych's avatar
chenych committed
94
95
96
97
98
        chosen_masks, rejected_masks = torch.split(inputs["attention_mask"], batch_size, dim=0)
        chosen_rewards, rejected_rewards = torch.split(values, batch_size, dim=0)
        chosen_scores = chosen_rewards.gather(dim=-1, index=(chosen_masks.sum(dim=-1, keepdim=True) - 1))
        rejected_scores = rejected_rewards.gather(dim=-1, index=(rejected_masks.sum(dim=-1, keepdim=True) - 1))
        chosen_scores, rejected_scores = chosen_scores.squeeze(), rejected_scores.squeeze()
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
99

chenych's avatar
chenych committed
100
101
102
103
104
        loss = -torch.nn.functional.logsigmoid(chosen_scores.float() - rejected_scores.float()).mean()
        if return_outputs:
            return loss, (loss, chosen_scores, rejected_scores)
        else:
            return loss
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

    def save_predictions(self, predict_results: "PredictionOutput") -> None:
        r"""
        Saves model predictions to `output_dir`.

        A custom behavior that not contained in Seq2SeqTrainer.
        """
        if not self.is_world_process_zero():
            return

        output_prediction_file = os.path.join(self.args.output_dir, "generated_predictions.jsonl")
        logger.info(f"Saving prediction results to {output_prediction_file}")
        chosen_scores, rejected_scores = predict_results.predictions

        with open(output_prediction_file, "w", encoding="utf-8") as writer:
            res: List[str] = []
            for c_score, r_score in zip(chosen_scores, rejected_scores):
                res.append(json.dumps({"chosen": round(float(c_score), 2), "rejected": round(float(r_score), 2)}))
chenych's avatar
chenych committed
123

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
124
            writer.write("\n".join(res))