misc.py 3.57 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import TYPE_CHECKING, List

from ...extras.logging import get_logger


if TYPE_CHECKING:
    from transformers import PretrainedConfig, PreTrainedModel, PreTrainedTokenizer


logger = get_logger(__name__)


def find_all_linear_modules(model: "PreTrainedModel", freeze_vision_tower: bool) -> List[str]:
    r"""
    Finds all available modules to apply lora or galore.
    """
luopl's avatar
luopl committed
31
    model_type = getattr(model.config, "model_type", None)
chenych's avatar
chenych committed
32
    forbidden_modules = {"lm_head"}
luopl's avatar
luopl committed
33
    if model_type == "chatglm":
chenych's avatar
chenych committed
34
        forbidden_modules.add("output_layer")
luopl's avatar
luopl committed
35
    elif model_type == "internlm2":
chenych's avatar
chenych committed
36
        forbidden_modules.add("output")
luopl's avatar
luopl committed
37
    elif model_type in ["llava", "llava_next", "llava_next_video", "paligemma", "video_llava"]:
chenych's avatar
chenych committed
38
        forbidden_modules.add("multi_modal_projector")
luopl's avatar
luopl committed
39
40
    elif model_type == "qwen2_vl":
        forbidden_modules.add("merger")
chenych's avatar
chenych committed
41
42

    if freeze_vision_tower:
luopl's avatar
luopl committed
43
44
45
46
        if model_type == "qwen2_vl":
            forbidden_modules.add("visual")
        else:
            forbidden_modules.add("vision_tower")
chenych's avatar
chenych committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

    module_names = set()
    for name, module in model.named_modules():
        if any(forbidden_module in name for forbidden_module in forbidden_modules):
            continue

        if "Linear" in module.__class__.__name__ and "Embedding" not in module.__class__.__name__:
            module_names.add(name.split(".")[-1])

    logger.info("Found linear modules: {}".format(",".join(module_names)))
    return list(module_names)


def find_expanded_modules(model: "PreTrainedModel", target_modules: List[str], num_layer_trainable: int) -> List[str]:
    r"""
    Finds the modules in the expanded blocks to apply lora.
    """
    num_layers = getattr(model.config, "num_hidden_layers", None)
    if not num_layers:
        raise ValueError("Model was not supported.")

    if num_layers % num_layer_trainable != 0:
        raise ValueError(
            "`num_layers` {} should be divisible by `num_layer_trainable` {}.".format(num_layers, num_layer_trainable)
        )

    stride = num_layers // num_layer_trainable
    trainable_layer_ids = range(stride - 1, num_layers + stride - 1, stride)
    trainable_layers = [".{:d}.".format(idx) for idx in trainable_layer_ids]
    module_names = []
    for name, _ in model.named_modules():
        if any(target_module in name for target_module in target_modules) and any(
            trainable_layer in name for trainable_layer in trainable_layers
        ):
            module_names.append(name)

    logger.info("Apply lora to layers: {}".format(",".join(map(str, trainable_layer_ids))))
    return module_names


def register_autoclass(config: "PretrainedConfig", model: "PreTrainedModel", tokenizer: "PreTrainedTokenizer"):
    if "AutoConfig" in getattr(config, "auto_map", {}):
        config.__class__.register_for_auto_class()
    if "AutoModelForCausalLM" in getattr(config, "auto_map", {}):
        model.__class__.register_for_auto_class()
    if "AutoTokenizer" in tokenizer.init_kwargs.get("auto_map", {}):
        tokenizer.__class__.register_for_auto_class()