checkpointing.py 7.04 KB
Newer Older
luopl's avatar
luopl committed
1
# Copyright 2024 HuggingFace Inc., Daniel Han-Chen & the Unsloth team and the LlamaFactory team.
chenych's avatar
chenych committed
2
#
luopl's avatar
luopl committed
3
# This code is inspired by the HuggingFace's Transformers and PEFT library,
chenych's avatar
chenych committed
4
5
# https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/modeling_utils.py
# https://github.com/huggingface/peft/blob/v0.10.0/src/peft/utils/other.py
luopl's avatar
luopl committed
6
7
# and the Unsloth library.
# https://github.com/unslothai/unsloth/blob/July-2024/unsloth/models/_utils.py
chenych's avatar
chenych committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
luopl's avatar
luopl committed
22
from functools import partial, wraps
chenych's avatar
chenych committed
23
from types import MethodType
luopl's avatar
luopl committed
24
from typing import TYPE_CHECKING, Any, Callable, Dict, Optional, Tuple, Union
chenych's avatar
chenych committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

import torch

from ...extras.constants import LAYERNORM_NAMES
from ...extras.logging import get_logger


if TYPE_CHECKING:
    from transformers import PreTrainedModel

    from ...hparams import ModelArguments


logger = get_logger(__name__)


luopl's avatar
luopl committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
def get_unsloth_gradient_checkpointing_func() -> Callable:
    class UnslothGradientCheckpointing(torch.autograd.Function):
        r"""
        Saves VRAM by smartly offloading to RAM.
        """

        @staticmethod
        @torch.cuda.amp.custom_fwd
        def forward(
            ctx: "torch.autograd.Function",
            forward_function: "torch.Module",
            hidden_states: "torch.Tensor",
            *args: Union["torch.Tensor", Any],
        ) -> "torch.Tensor":
            saved_hidden_states = hidden_states.to("cpu", non_blocking=True)
            with torch.no_grad():
                output = forward_function(hidden_states, *args)

            ctx.save_for_backward(saved_hidden_states)
            ctx.forward_function = forward_function
            ctx.args = args
            return output

        @staticmethod
        @torch.cuda.amp.custom_bwd
        def backward(ctx: "torch.autograd.Function", grad_output: "torch.Tensor") -> "torch.Tensor":
            (hidden_states,) = ctx.saved_tensors
            hidden_states = hidden_states.to("cuda", non_blocking=True).detach()
            hidden_states.requires_grad_(True)
            with torch.enable_grad():
                (output,) = ctx.forward_function(hidden_states, *ctx.args)

            torch.autograd.backward(output, grad_output)
            return (None, hidden_states.grad) + (None,) * len(ctx.args)

    return UnslothGradientCheckpointing.apply


def get_custom_gradient_checkpointing_func(gradient_checkpointing_func: Callable) -> Callable:
    r"""
    Only applies gradient checkpointing to trainable layers.
    """

    @wraps(gradient_checkpointing_func)
    def custom_gradient_checkpointing_func(func: Callable, *args: Union["torch.Tensor", Any], **kwargs):
        module: "torch.nn.Module" = func.__self__

        if any(param.requires_grad for param in module.parameters()):
            for arg in args:
                if torch.is_tensor(arg) and torch.is_floating_point(arg):
                    arg.requires_grad_(True)

        return gradient_checkpointing_func(func, *args, **kwargs)

    if hasattr(gradient_checkpointing_func, "__self__"):  # fix unsloth gc test case
        custom_gradient_checkpointing_func.__self__ = gradient_checkpointing_func.__self__

    return custom_gradient_checkpointing_func


chenych's avatar
chenych committed
101
def _gradient_checkpointing_enable(
luopl's avatar
luopl committed
102
103
104
    self: "PreTrainedModel",
    gradient_checkpointing_kwargs: Optional[Dict[str, Any]] = None,
    use_unsloth_gc: bool = False,
chenych's avatar
chenych committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
) -> None:
    r"""
    Activates gradient checkpointing for the current model.

    Modification of the original method to enable gradient checkpointing for block-wise optimizer.
    """
    from torch.utils.checkpoint import checkpoint

    if not self.supports_gradient_checkpointing:
        raise ValueError("{} does not support gradient checkpointing.".format(self.__class__.__name__))

    if gradient_checkpointing_kwargs is None:
        gradient_checkpointing_kwargs = {"use_reentrant": True}

luopl's avatar
luopl committed
119
120
121
122
    if use_unsloth_gc:
        gradient_checkpointing_func = get_unsloth_gradient_checkpointing_func()
    else:
        gradient_checkpointing_func = partial(checkpoint, **gradient_checkpointing_kwargs)
chenych's avatar
chenych committed
123

luopl's avatar
luopl committed
124
    gradient_checkpointing_func = get_custom_gradient_checkpointing_func(gradient_checkpointing_func)
chenych's avatar
chenych committed
125
126
127
128
129
    if "value" in inspect.signature(self._set_gradient_checkpointing).parameters:  # old GC format
        self.apply(partial(self._set_gradient_checkpointing, value=True))
        self.enable_input_require_grads()
        logger.warning("You are using the old GC format, some features (e.g. BAdam) will be invalid.")
    else:  # have already enabled input require gradients
luopl's avatar
luopl committed
130
        self._set_gradient_checkpointing(enable=True, gradient_checkpointing_func=gradient_checkpointing_func)
chenych's avatar
chenych committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157


def _fp32_forward_post_hook(
    module: "torch.nn.Module", args: Tuple["torch.Tensor"], output: "torch.Tensor"
) -> "torch.Tensor":
    return output.to(torch.float32)


def prepare_model_for_training(model: "PreTrainedModel", model_args: "ModelArguments") -> None:
    r"""
    Includes:
        (1) cast the layernorm in fp32
        (2) make output embedding layer require grads
        (3) add the upcasting of the lm_head in fp32
    """
    if model_args.upcast_layernorm:
        logger.info("Upcasting layernorm weights in float32.")
        for name, param in model.named_parameters():
            if param.ndim == 1 and any(ln_name in name for ln_name in LAYERNORM_NAMES):
                param.data = param.data.to(torch.float32)

    if not model_args.disable_gradient_checkpointing:
        if not getattr(model, "supports_gradient_checkpointing", False):
            logger.warning("Current model does not support gradient checkpointing.")
        else:
            # use_reentrant=False might increase VRAM usage (have not been empirically verified yet)
            # According to: https://github.com/huggingface/transformers/issues/28339
luopl's avatar
luopl committed
158
159
160
161
            gradient_checkpointing_enable = partial(
                _gradient_checkpointing_enable, use_unsloth_gc=model_args.use_unsloth_gc
            )
            model.gradient_checkpointing_enable = MethodType(gradient_checkpointing_enable, model)
chenych's avatar
chenych committed
162
163
164
165
166
167
168
169
170
            model.gradient_checkpointing_enable(gradient_checkpointing_kwargs={"use_reentrant": True})
            setattr(model.config, "use_cache", False)  # turn off when gradient checkpointing is enabled
            logger.info("Gradient checkpointing enabled.")

    if model_args.upcast_lmhead_output:
        output_layer = model.get_output_embeddings()
        if isinstance(output_layer, torch.nn.Linear) and output_layer.weight.dtype != torch.float32:
            logger.info("Upcasting lm_head outputs in float32.")
            output_layer.register_forward_hook(_fp32_forward_post_hook)