loader.py 7.79 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import TYPE_CHECKING, Any, Dict, Optional, TypedDict

import torch
from transformers import AutoConfig, AutoModelForCausalLM, AutoModelForVision2Seq, AutoProcessor, AutoTokenizer
from trl import AutoModelForCausalLMWithValueHead

from ..extras.logging import get_logger
from ..extras.misc import count_parameters, skip_check_imports, try_download_model_from_ms
from .adapter import init_adapter
luopl's avatar
luopl committed
24
from .model_utils.liger_kernel import apply_liger_kernel
chenych's avatar
chenych committed
25
26
27
28
from .model_utils.misc import register_autoclass
from .model_utils.mod import convert_pretrained_model_to_mod, load_mod_pretrained_model
from .model_utils.unsloth import load_unsloth_pretrained_model
from .model_utils.valuehead import load_valuehead_params
luopl's avatar
luopl committed
29
from .patcher import patch_config, patch_model, patch_processor, patch_tokenizer, patch_valuehead_model
chenych's avatar
chenych committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63


if TYPE_CHECKING:
    from transformers import PretrainedConfig, PreTrainedModel, PreTrainedTokenizer, ProcessorMixin

    from ..hparams import FinetuningArguments, ModelArguments


logger = get_logger(__name__)


class TokenizerModule(TypedDict):
    tokenizer: "PreTrainedTokenizer"
    processor: Optional["ProcessorMixin"]


def _get_init_kwargs(model_args: "ModelArguments") -> Dict[str, Any]:
    r"""
    Gets arguments to load config/tokenizer/model.

    Note: including inplace operation of model_args.
    """
    skip_check_imports()
    model_args.model_name_or_path = try_download_model_from_ms(model_args)
    return {
        "trust_remote_code": True,
        "cache_dir": model_args.cache_dir,
        "revision": model_args.model_revision,
        "token": model_args.hf_hub_token,
    }


def load_tokenizer(model_args: "ModelArguments") -> "TokenizerModule":
    r"""
luopl's avatar
luopl committed
64
    Loads pretrained tokenizer and optionally loads processor.
chenych's avatar
chenych committed
65
66
67
68

    Note: including inplace operation of model_args.
    """
    init_kwargs = _get_init_kwargs(model_args)
luopl's avatar
luopl committed
69
    config = load_config(model_args)
chenych's avatar
chenych committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
    try:
        tokenizer = AutoTokenizer.from_pretrained(
            model_args.model_name_or_path,
            use_fast=model_args.use_fast_tokenizer,
            split_special_tokens=model_args.split_special_tokens,
            padding_side="right",
            **init_kwargs,
        )
    except ValueError:  # try the fast one
        tokenizer = AutoTokenizer.from_pretrained(
            model_args.model_name_or_path,
            use_fast=True,
            padding_side="right",
            **init_kwargs,
        )
luopl's avatar
luopl committed
85
86
    except Exception as e:
        raise OSError("Failed to load tokenizer.") from e
chenych's avatar
chenych committed
87
88
89
90
91
92
93
94
95
96
97
98

    if model_args.new_special_tokens is not None:
        num_added_tokens = tokenizer.add_special_tokens(
            dict(additional_special_tokens=model_args.new_special_tokens),
            replace_additional_special_tokens=False,
        )
        logger.info("Add {} to special tokens.".format(",".join(model_args.new_special_tokens)))
        if num_added_tokens > 0 and not model_args.resize_vocab:
            model_args.resize_vocab = True
            logger.warning("New tokens have been added, changed `resize_vocab` to True.")

    patch_tokenizer(tokenizer)
luopl's avatar
luopl committed
99
100
101
102
103
104
    try:
        processor = AutoProcessor.from_pretrained(model_args.model_name_or_path, **init_kwargs)
        patch_processor(processor, config, tokenizer, model_args)
    except Exception as e:
        logger.warning("Processor was not found: {}.".format(e))
        processor = None
chenych's avatar
chenych committed
105

luopl's avatar
luopl committed
106
107
108
    # Avoid load tokenizer, see:
    # https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/models/auto/processing_auto.py#L324
    if processor is not None and "Processor" not in processor.__class__.__name__:
chenych's avatar
chenych committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
        processor = None

    return {"tokenizer": tokenizer, "processor": processor}


def load_config(model_args: "ModelArguments") -> "PretrainedConfig":
    r"""
    Loads model config.
    """
    init_kwargs = _get_init_kwargs(model_args)
    return AutoConfig.from_pretrained(model_args.model_name_or_path, **init_kwargs)


def load_model(
    tokenizer: "PreTrainedTokenizer",
    model_args: "ModelArguments",
    finetuning_args: "FinetuningArguments",
    is_trainable: bool = False,
    add_valuehead: bool = False,
) -> "PreTrainedModel":
    r"""
    Loads pretrained model.
    """
    init_kwargs = _get_init_kwargs(model_args)
    config = load_config(model_args)
    patch_config(config, tokenizer, model_args, init_kwargs, is_trainable)
luopl's avatar
luopl committed
135
    apply_liger_kernel(config, model_args, is_trainable, require_logits=(finetuning_args.stage not in ["pt", "sft"]))
chenych's avatar
chenych committed
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

    model = None
    lazy_load = False
    if model_args.use_unsloth:
        if model_args.adapter_name_or_path is not None:
            lazy_load = True
        elif is_trainable:
            model = load_unsloth_pretrained_model(config, model_args)

    if model is None and not lazy_load:
        init_kwargs["config"] = config
        init_kwargs["pretrained_model_name_or_path"] = model_args.model_name_or_path

        if model_args.mixture_of_depths == "load":
            model = load_mod_pretrained_model(**init_kwargs)
        else:
luopl's avatar
luopl committed
152
153
154
155
156
157
158
159
            if type(config) in AutoModelForVision2Seq._model_mapping.keys():  # assume built-in models
                load_class = AutoModelForVision2Seq
            else:
                load_class = AutoModelForCausalLM
            if model_args.train_from_scratch:
                model = load_class.from_config(config)
            else:
                model = load_class.from_pretrained(**init_kwargs)
chenych's avatar
chenych committed
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

        if model_args.mixture_of_depths == "convert":
            model = convert_pretrained_model_to_mod(model, config, model_args)

    if not lazy_load:
        patch_model(model, tokenizer, model_args, is_trainable, add_valuehead)
        register_autoclass(config, model, tokenizer)

    model = init_adapter(config, model, model_args, finetuning_args, is_trainable)

    if add_valuehead:
        model = AutoModelForCausalLMWithValueHead.from_pretrained(model)
        patch_valuehead_model(model)

        if model_args.adapter_name_or_path is not None:
            vhead_path = model_args.adapter_name_or_path[-1]
        else:
            vhead_path = model_args.model_name_or_path

        vhead_params = load_valuehead_params(vhead_path, model_args)
        if vhead_params is not None:
            model.load_state_dict(vhead_params, strict=False)
            logger.info("Loaded valuehead from checkpoint: {}".format(vhead_path))

    if not is_trainable:
        model.requires_grad_(False)
        for param in model.parameters():
            if param.data.dtype == torch.float32 and model_args.compute_dtype != torch.float32:
                param.data = param.data.to(model_args.compute_dtype)

        model.eval()
    else:
        model.train()

    trainable_params, all_param = count_parameters(model)
    if is_trainable:
        param_stats = "trainable params: {:,} || all params: {:,} || trainable%: {:.4f}".format(
            trainable_params, all_param, 100 * trainable_params / all_param
        )
    else:
        param_stats = "all params: {:,}".format(all_param)

    logger.info(param_stats)

    if model_args.print_param_status:
        for name, param in model.named_parameters():
            print(
                "name: {}, dtype: {}, device: {}, trainable: {}".format(
                    name, param.dtype, param.device, param.requires_grad
                )
            )

    return model