ploting.py 3.14 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
15
16
17
import json
import math
import os
chenych's avatar
chenych committed
18
from typing import Any, Dict, List
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
19
20
21
22
23
24
25
26

from transformers.trainer import TRAINER_STATE_NAME

from .logging import get_logger
from .packages import is_matplotlib_available


if is_matplotlib_available():
chenych's avatar
chenych committed
27
    import matplotlib.figure
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
28
29
30
31
32
33
34
35
36
37
    import matplotlib.pyplot as plt


logger = get_logger(__name__)


def smooth(scalars: List[float]) -> List[float]:
    r"""
    EMA implementation according to TensorBoard.
    """
chenych's avatar
chenych committed
38
39
40
    if len(scalars) == 0:
        return []

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
41
    last = scalars[0]
chenych's avatar
chenych committed
42
    smoothed = []
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
43
44
45
46
47
48
49
50
    weight = 1.8 * (1 / (1 + math.exp(-0.05 * len(scalars))) - 0.5)  # a sigmoid function
    for next_val in scalars:
        smoothed_val = last * weight + (1 - weight) * next_val
        smoothed.append(smoothed_val)
        last = smoothed_val
    return smoothed


chenych's avatar
chenych committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
def gen_loss_plot(trainer_log: List[Dict[str, Any]]) -> "matplotlib.figure.Figure":
    r"""
    Plots loss curves in LlamaBoard.
    """
    plt.close("all")
    plt.switch_backend("agg")
    fig = plt.figure()
    ax = fig.add_subplot(111)
    steps, losses = [], []
    for log in trainer_log:
        if log.get("loss", None):
            steps.append(log["current_steps"])
            losses.append(log["loss"])

    ax.plot(steps, losses, color="#1f77b4", alpha=0.4, label="original")
    ax.plot(steps, smooth(losses), color="#1f77b4", label="smoothed")
    ax.legend()
    ax.set_xlabel("step")
    ax.set_ylabel("loss")
    return fig


luopl's avatar
luopl committed
73
def plot_loss(save_dictionary: str, keys: List[str] = ["loss"]) -> None:
chenych's avatar
chenych committed
74
75
76
77
    r"""
    Plots loss curves and saves the image.
    """
    plt.switch_backend("agg")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
    with open(os.path.join(save_dictionary, TRAINER_STATE_NAME), "r", encoding="utf-8") as f:
        data = json.load(f)

    for key in keys:
        steps, metrics = [], []
        for i in range(len(data["log_history"])):
            if key in data["log_history"][i]:
                steps.append(data["log_history"][i]["step"])
                metrics.append(data["log_history"][i][key])

        if len(metrics) == 0:
            logger.warning(f"No metric {key} to plot.")
            continue

        plt.figure()
        plt.plot(steps, metrics, color="#1f77b4", alpha=0.4, label="original")
        plt.plot(steps, smooth(metrics), color="#1f77b4", label="smoothed")
        plt.title("training {} of {}".format(key, save_dictionary))
        plt.xlabel("step")
        plt.ylabel(key)
        plt.legend()
        figure_path = os.path.join(save_dictionary, "training_{}.png".format(key.replace("/", "_")))
        plt.savefig(figure_path, format="png", dpi=100)
        print("Figure saved at:", figure_path)