preprocess.py 4.1 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from functools import partial
from typing import TYPE_CHECKING, Callable, Literal, Optional, Tuple

from .processors.feedback import preprocess_feedback_dataset
from .processors.pairwise import preprocess_pairwise_dataset, print_pairwise_dataset_example
from .processors.pretrain import preprocess_pretrain_dataset
from .processors.supervised import (
    preprocess_packed_supervised_dataset,
    preprocess_supervised_dataset,
    print_supervised_dataset_example,
)
from .processors.unsupervised import preprocess_unsupervised_dataset, print_unsupervised_dataset_example


if TYPE_CHECKING:
    from transformers import PreTrainedTokenizer, ProcessorMixin

    from ..hparams import DataArguments
    from .template import Template


def get_preprocess_and_print_func(
    data_args: "DataArguments",
    stage: Literal["pt", "sft", "rm", "ppo", "kto"],
    template: "Template",
    tokenizer: "PreTrainedTokenizer",
    processor: Optional["ProcessorMixin"],
    do_generate: bool = False,
) -> Tuple[Callable, Callable]:
    if stage == "pt":
        preprocess_func = partial(
            preprocess_pretrain_dataset,
            tokenizer=tokenizer,
            data_args=data_args,
        )
        print_function = partial(print_unsupervised_dataset_example, tokenizer=tokenizer)
    elif stage == "sft" and not do_generate:
        if data_args.packing:
luopl's avatar
luopl committed
53
            if data_args.neat_packing:  # hack datasets to have int32 attention mask
chenych's avatar
chenych committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
                from datasets.arrow_writer import OptimizedTypedSequence, TypedSequence

                def __init__(self, data, **kwargs):
                    return TypedSequence.__init__(
                        self,
                        data,
                        type=kwargs.pop("type", None),
                        try_type=kwargs.pop("try_type", None),
                        optimized_int_type=kwargs.pop("optimized_int_type", None),
                    )

                OptimizedTypedSequence.__init__ = __init__
            preprocess_func = partial(
                preprocess_packed_supervised_dataset,
                template=template,
                tokenizer=tokenizer,
luopl's avatar
luopl committed
70
                processor=processor,
chenych's avatar
chenych committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
                data_args=data_args,
            )
        else:
            preprocess_func = partial(
                preprocess_supervised_dataset,
                template=template,
                tokenizer=tokenizer,
                processor=processor,
                data_args=data_args,
            )

        print_function = partial(print_supervised_dataset_example, tokenizer=tokenizer)
    elif stage == "rm":
        preprocess_func = partial(
            preprocess_pairwise_dataset,
            template=template,
            tokenizer=tokenizer,
            processor=processor,
            data_args=data_args,
        )
        print_function = partial(print_pairwise_dataset_example, tokenizer=tokenizer)
    elif stage == "kto":
        preprocess_func = partial(
            preprocess_feedback_dataset,
            template=template,
            tokenizer=tokenizer,
            processor=processor,
            data_args=data_args,
        )
        print_function = partial(print_supervised_dataset_example, tokenizer=tokenizer)
    else:
        preprocess_func = partial(
            preprocess_unsupervised_dataset,
            template=template,
            tokenizer=tokenizer,
            processor=processor,
            data_args=data_args,
        )
        print_function = partial(print_unsupervised_dataset_example, tokenizer=tokenizer)

    return preprocess_func, print_function