data_utils.py 3.2 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from enum import Enum, unique
from typing import TYPE_CHECKING, Dict, List, Optional, Sequence, Set, TypedDict, Union

from datasets import DatasetDict, concatenate_datasets, interleave_datasets

from ..extras.logging import get_logger


if TYPE_CHECKING:
    from datasets import Dataset, IterableDataset

    from ..hparams import DataArguments


logger = get_logger(__name__)


SLOTS = Sequence[Union[str, Set[str], Dict[str, str]]]


@unique
class Role(str, Enum):
    USER = "user"
    ASSISTANT = "assistant"
    SYSTEM = "system"
    FUNCTION = "function"
    OBSERVATION = "observation"


class DatasetModule(TypedDict):
    train_dataset: Optional[Union["Dataset", "IterableDataset"]]
    eval_dataset: Optional[Union["Dataset", "IterableDataset"]]


def merge_dataset(
    all_datasets: List[Union["Dataset", "IterableDataset"]], data_args: "DataArguments", seed: int
) -> Union["Dataset", "IterableDataset"]:
luopl's avatar
luopl committed
52
53
54
    r"""
    Merges multiple datasets to a unified dataset.
    """
chenych's avatar
chenych committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
    if len(all_datasets) == 1:
        return all_datasets[0]
    elif data_args.mix_strategy == "concat":
        if data_args.streaming:
            logger.warning("The samples between different datasets will not be mixed in streaming mode.")

        return concatenate_datasets(all_datasets)
    elif data_args.mix_strategy.startswith("interleave"):
        if not data_args.streaming:
            logger.warning("We recommend using `mix_strategy=concat` in non-streaming mode.")

        return interleave_datasets(
            datasets=all_datasets,
            probabilities=data_args.interleave_probs,
            seed=seed,
            stopping_strategy="first_exhausted" if data_args.mix_strategy.endswith("under") else "all_exhausted",
        )
    else:
luopl's avatar
luopl committed
73
        raise ValueError("Unknown mixing strategy: {}.".format(data_args.mix_strategy))
chenych's avatar
chenych committed
74
75
76
77
78
79


def split_dataset(
    dataset: Union["Dataset", "IterableDataset"], data_args: "DataArguments", seed: int
) -> "DatasetDict":
    r"""
luopl's avatar
luopl committed
80
81
82
    Splits the dataset and returns a dataset dict containing train set and validation set.

    Supports both map dataset and iterable dataset.
chenych's avatar
chenych committed
83
84
85
86
87
88
89
90
91
92
    """
    if data_args.streaming:
        dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=seed)
        val_set = dataset.take(int(data_args.val_size))
        train_set = dataset.skip(int(data_args.val_size))
        return DatasetDict({"train": train_set, "validation": val_set})
    else:
        val_size = int(data_args.val_size) if data_args.val_size > 1 else data_args.val_size
        dataset = dataset.train_test_split(test_size=val_size, seed=seed)
        return DatasetDict({"train": dataset["train"], "validation": dataset["test"]})