hf_engine.py 13.8 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
15
16
17
18
import asyncio
import concurrent.futures
import os
from threading import Thread
chenych's avatar
chenych committed
19
from typing import TYPE_CHECKING, Any, AsyncGenerator, Callable, Dict, List, Optional, Sequence, Tuple, Union
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
20
21
22

import torch
from transformers import GenerationConfig, TextIteratorStreamer
luopl's avatar
luopl committed
23
from typing_extensions import override
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
24
25

from ..data import get_template_and_fix_tokenizer
luopl's avatar
luopl committed
26
from ..extras.constants import IMAGE_PLACEHOLDER, VIDEO_PLACEHOLDER
chenych's avatar
chenych committed
27
from ..extras.logging import get_logger
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
28
29
30
31
32
33
from ..extras.misc import get_logits_processor
from ..model import load_model, load_tokenizer
from .base_engine import BaseEngine, Response


if TYPE_CHECKING:
chenych's avatar
chenych committed
34
    from transformers import PreTrainedModel, PreTrainedTokenizer, ProcessorMixin
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
35
36
37
    from trl import PreTrainedModelWrapper

    from ..data import Template
luopl's avatar
luopl committed
38
    from ..data.mm_plugin import ImageInput, VideoInput
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
39
40
41
    from ..hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments


chenych's avatar
chenych committed
42
43
44
logger = get_logger(__name__)


Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
45
46
47
48
49
50
51
52
53
class HuggingfaceEngine(BaseEngine):
    def __init__(
        self,
        model_args: "ModelArguments",
        data_args: "DataArguments",
        finetuning_args: "FinetuningArguments",
        generating_args: "GeneratingArguments",
    ) -> None:
        self.can_generate = finetuning_args.stage == "sft"
chenych's avatar
chenych committed
54
55
56
        tokenizer_module = load_tokenizer(model_args)
        self.tokenizer = tokenizer_module["tokenizer"]
        self.processor = tokenizer_module["processor"]
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
57
        self.tokenizer.padding_side = "left" if self.can_generate else "right"
luopl's avatar
luopl committed
58
        self.template = get_template_and_fix_tokenizer(self.tokenizer, data_args)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
59
60
61
62
        self.model = load_model(
            self.tokenizer, model_args, finetuning_args, is_trainable=False, add_valuehead=(not self.can_generate)
        )  # must after fixing tokenizer to resize vocab
        self.generating_args = generating_args.to_dict()
chenych's avatar
chenych committed
63
64
65
66
67
68
69
70
        try:
            asyncio.get_event_loop()
        except RuntimeError:
            logger.warning("There is no current event loop, creating a new one.")
            loop = asyncio.new_event_loop()
            asyncio.set_event_loop(loop)

        self.semaphore = asyncio.Semaphore(int(os.environ.get("MAX_CONCURRENT", "1")))
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
71
72
73
74
75

    @staticmethod
    def _process_args(
        model: "PreTrainedModel",
        tokenizer: "PreTrainedTokenizer",
chenych's avatar
chenych committed
76
        processor: Optional["ProcessorMixin"],
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
77
78
79
80
81
        template: "Template",
        generating_args: Dict[str, Any],
        messages: Sequence[Dict[str, str]],
        system: Optional[str] = None,
        tools: Optional[str] = None,
luopl's avatar
luopl committed
82
83
        image: Optional["ImageInput"] = None,
        video: Optional["VideoInput"] = None,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
84
85
        input_kwargs: Optional[Dict[str, Any]] = {},
    ) -> Tuple[Dict[str, Any], int]:
luopl's avatar
luopl committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
        mm_input_dict = {"images": [], "videos": [], "imglens": [0], "vidlens": [0]}
        if image is not None:
            mm_input_dict.update({"images": [image], "imglens": [1]})
            if IMAGE_PLACEHOLDER not in messages[0]["content"]:
                messages[0]["content"] = IMAGE_PLACEHOLDER + messages[0]["content"]

        if video is not None:
            mm_input_dict.update({"videos": [video], "vidlens": [1]})
            if VIDEO_PLACEHOLDER not in messages[0]["content"]:
                messages[0]["content"] = VIDEO_PLACEHOLDER + messages[0]["content"]

        messages = template.mm_plugin.process_messages(
            messages, mm_input_dict["images"], mm_input_dict["videos"], processor
        )
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
100
        paired_messages = messages + [{"role": "assistant", "content": ""}]
chenych's avatar
chenych committed
101
        system = system or generating_args["default_system"]
luopl's avatar
luopl committed
102
103
104
        prompt_ids, _ = template.encode_oneturn(tokenizer, paired_messages, system, tools)
        prompt_ids, _ = template.mm_plugin.process_token_ids(
            prompt_ids, None, mm_input_dict["images"], mm_input_dict["videos"], tokenizer, processor
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
105
106
107
        )
        prompt_length = len(prompt_ids)
        inputs = torch.tensor([prompt_ids], device=model.device)
chenych's avatar
chenych committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
        attention_mask = torch.ones_like(inputs, dtype=torch.bool)

        do_sample: Optional[bool] = input_kwargs.pop("do_sample", None)
        temperature: Optional[float] = input_kwargs.pop("temperature", None)
        top_p: Optional[float] = input_kwargs.pop("top_p", None)
        top_k: Optional[float] = input_kwargs.pop("top_k", None)
        num_return_sequences: int = input_kwargs.pop("num_return_sequences", 1)
        repetition_penalty: Optional[float] = input_kwargs.pop("repetition_penalty", None)
        length_penalty: Optional[float] = input_kwargs.pop("length_penalty", None)
        max_length: Optional[int] = input_kwargs.pop("max_length", None)
        max_new_tokens: Optional[int] = input_kwargs.pop("max_new_tokens", None)
        stop: Optional[Union[str, List[str]]] = input_kwargs.pop("stop", None)

        if stop is not None:
            logger.warning("Stop parameter is not supported by the huggingface engine yet.")

        generating_args = generating_args.copy()
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
125
126
127
        generating_args.update(
            dict(
                do_sample=do_sample if do_sample is not None else generating_args["do_sample"],
chenych's avatar
chenych committed
128
129
130
131
132
133
134
135
                temperature=temperature if temperature is not None else generating_args["temperature"],
                top_p=top_p if top_p is not None else generating_args["top_p"],
                top_k=top_k if top_k is not None else generating_args["top_k"],
                num_return_sequences=num_return_sequences,
                repetition_penalty=repetition_penalty
                if repetition_penalty is not None
                else generating_args["repetition_penalty"],
                length_penalty=length_penalty if length_penalty is not None else generating_args["length_penalty"],
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
136
137
138
139
140
                eos_token_id=[tokenizer.eos_token_id] + tokenizer.additional_special_tokens_ids,
                pad_token_id=tokenizer.pad_token_id,
            )
        )

chenych's avatar
chenych committed
141
        if isinstance(num_return_sequences, int) and num_return_sequences > 1:  # do_sample needs temperature > 0
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
142
            generating_args["do_sample"] = True
chenych's avatar
chenych committed
143
144
145
146
147
148
149
150
            generating_args["temperature"] = generating_args["temperature"] or 1.0

        if not generating_args["temperature"]:
            generating_args["do_sample"] = False

        if not generating_args["do_sample"]:
            generating_args.pop("temperature", None)
            generating_args.pop("top_p", None)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
151
152
153
154
155
156
157
158
159
160
161

        if max_length:
            generating_args.pop("max_new_tokens", None)
            generating_args["max_length"] = max_length

        if max_new_tokens:
            generating_args.pop("max_length", None)
            generating_args["max_new_tokens"] = max_new_tokens

        gen_kwargs = dict(
            inputs=inputs,
chenych's avatar
chenych committed
162
            attention_mask=attention_mask,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
163
164
165
166
            generation_config=GenerationConfig(**generating_args),
            logits_processor=get_logits_processor(),
        )

luopl's avatar
luopl committed
167
168
169
170
        mm_inputs = template.mm_plugin.get_mm_inputs(**mm_input_dict, seqlens=[prompt_length], processor=processor)
        for key, value in mm_inputs.items():
            value = value if isinstance(value, torch.Tensor) else torch.tensor(value)
            gen_kwargs[key] = value.to(model.device)
chenych's avatar
chenych committed
171

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
172
173
174
175
176
177
178
        return gen_kwargs, prompt_length

    @staticmethod
    @torch.inference_mode()
    def _chat(
        model: "PreTrainedModel",
        tokenizer: "PreTrainedTokenizer",
chenych's avatar
chenych committed
179
        processor: Optional["ProcessorMixin"],
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
180
181
182
183
184
        template: "Template",
        generating_args: Dict[str, Any],
        messages: Sequence[Dict[str, str]],
        system: Optional[str] = None,
        tools: Optional[str] = None,
luopl's avatar
luopl committed
185
186
        image: Optional["ImageInput"] = None,
        video: Optional["VideoInput"] = None,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
187
188
189
        input_kwargs: Optional[Dict[str, Any]] = {},
    ) -> List["Response"]:
        gen_kwargs, prompt_length = HuggingfaceEngine._process_args(
luopl's avatar
luopl committed
190
            model, tokenizer, processor, template, generating_args, messages, system, tools, image, video, input_kwargs
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
        )
        generate_output = model.generate(**gen_kwargs)
        response_ids = generate_output[:, prompt_length:]
        response = tokenizer.batch_decode(response_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
        results = []
        for i in range(len(response)):
            eos_index = (response_ids[i] == tokenizer.eos_token_id).nonzero()
            response_length = (eos_index[0].item() + 1) if len(eos_index) else len(response_ids[i])
            results.append(
                Response(
                    response_text=response[i],
                    response_length=response_length,
                    prompt_length=prompt_length,
                    finish_reason="stop" if len(eos_index) else "length",
                )
            )

        return results

    @staticmethod
    @torch.inference_mode()
    def _stream_chat(
        model: "PreTrainedModel",
        tokenizer: "PreTrainedTokenizer",
chenych's avatar
chenych committed
215
        processor: Optional["ProcessorMixin"],
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
216
217
218
219
220
        template: "Template",
        generating_args: Dict[str, Any],
        messages: Sequence[Dict[str, str]],
        system: Optional[str] = None,
        tools: Optional[str] = None,
luopl's avatar
luopl committed
221
222
        image: Optional["ImageInput"] = None,
        video: Optional["VideoInput"] = None,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
223
224
225
        input_kwargs: Optional[Dict[str, Any]] = {},
    ) -> Callable[[], str]:
        gen_kwargs, _ = HuggingfaceEngine._process_args(
luopl's avatar
luopl committed
226
            model, tokenizer, processor, template, generating_args, messages, system, tools, image, video, input_kwargs
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
        )
        streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
        gen_kwargs["streamer"] = streamer
        thread = Thread(target=model.generate, kwargs=gen_kwargs, daemon=True)
        thread.start()

        def stream():
            try:
                return streamer.__next__()
            except StopIteration:
                raise StopAsyncIteration()

        return stream

    @staticmethod
    @torch.inference_mode()
    def _get_scores(
        model: "PreTrainedModelWrapper",
        tokenizer: "PreTrainedTokenizer",
        batch_input: List[str],
        input_kwargs: Optional[Dict[str, Any]] = {},
    ) -> List[float]:
luopl's avatar
luopl committed
249
        max_length: Optional[int] = input_kwargs.pop("max_length", None)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
250
        device = getattr(model.pretrained_model, "device", "cuda")
luopl's avatar
luopl committed
251
        inputs: Dict[str, "torch.Tensor"] = tokenizer(
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
252
253
254
255
256
            batch_input,
            padding=True,
            truncation=True,
            max_length=max_length or getattr(model.config, "max_position_embeddings", 1024),
            return_tensors="pt",
luopl's avatar
luopl committed
257
            add_special_tokens=False,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
258
        ).to(device)
luopl's avatar
luopl committed
259
260
        values: "torch.Tensor" = model(**inputs, return_dict=True, use_cache=False)[-1]
        scores = values.gather(dim=-1, index=(inputs["attention_mask"].sum(dim=-1, keepdim=True) - 1))
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
261
262
        return scores

luopl's avatar
luopl committed
263
    @override
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
264
265
266
267
268
    async def chat(
        self,
        messages: Sequence[Dict[str, str]],
        system: Optional[str] = None,
        tools: Optional[str] = None,
luopl's avatar
luopl committed
269
270
        image: Optional["ImageInput"] = None,
        video: Optional["VideoInput"] = None,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
271
272
273
274
275
276
277
278
279
        **input_kwargs,
    ) -> List["Response"]:
        if not self.can_generate:
            raise ValueError("The current model does not support `chat`.")

        loop = asyncio.get_running_loop()
        input_args = (
            self.model,
            self.tokenizer,
chenych's avatar
chenych committed
280
            self.processor,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
281
282
283
284
285
            self.template,
            self.generating_args,
            messages,
            system,
            tools,
chenych's avatar
chenych committed
286
            image,
luopl's avatar
luopl committed
287
            video,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
288
289
            input_kwargs,
        )
chenych's avatar
chenych committed
290
        async with self.semaphore:
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
291
292
293
            with concurrent.futures.ThreadPoolExecutor() as pool:
                return await loop.run_in_executor(pool, self._chat, *input_args)

luopl's avatar
luopl committed
294
    @override
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
295
296
297
298
299
    async def stream_chat(
        self,
        messages: Sequence[Dict[str, str]],
        system: Optional[str] = None,
        tools: Optional[str] = None,
luopl's avatar
luopl committed
300
301
        image: Optional["ImageInput"] = None,
        video: Optional["VideoInput"] = None,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
302
303
304
305
306
307
308
309
310
        **input_kwargs,
    ) -> AsyncGenerator[str, None]:
        if not self.can_generate:
            raise ValueError("The current model does not support `stream_chat`.")

        loop = asyncio.get_running_loop()
        input_args = (
            self.model,
            self.tokenizer,
chenych's avatar
chenych committed
311
            self.processor,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
312
313
314
315
316
            self.template,
            self.generating_args,
            messages,
            system,
            tools,
chenych's avatar
chenych committed
317
            image,
luopl's avatar
luopl committed
318
            video,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
319
320
            input_kwargs,
        )
chenych's avatar
chenych committed
321
        async with self.semaphore:
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
322
323
324
325
326
327
328
329
            with concurrent.futures.ThreadPoolExecutor() as pool:
                stream = self._stream_chat(*input_args)
                while True:
                    try:
                        yield await loop.run_in_executor(pool, stream)
                    except StopAsyncIteration:
                        break

luopl's avatar
luopl committed
330
    @override
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
331
332
333
334
335
336
337
338
339
340
    async def get_scores(
        self,
        batch_input: List[str],
        **input_kwargs,
    ) -> List[float]:
        if self.can_generate:
            raise ValueError("Cannot get scores using an auto-regressive model.")

        loop = asyncio.get_running_loop()
        input_args = (self.model, self.tokenizer, batch_input, input_kwargs)
chenych's avatar
chenych committed
341
        async with self.semaphore:
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
342
343
            with concurrent.futures.ThreadPoolExecutor() as pool:
                return await loop.run_in_executor(pool, self._get_scores, *input_args)