base_engine.py 2.87 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
15
16
17
18
19
20
21
22
23
24
from abc import ABC, abstractmethod
from dataclasses import dataclass
from typing import TYPE_CHECKING, Any, AsyncGenerator, Dict, List, Literal, Optional, Sequence, Union


if TYPE_CHECKING:
    from transformers import PreTrainedModel, PreTrainedTokenizer
    from vllm import AsyncLLMEngine

    from ..data import Template
luopl's avatar
luopl committed
25
    from ..data.mm_plugin import ImageInput, VideoInput
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
26
27
28
29
30
31
32
33
34
35
36
37
    from ..hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments


@dataclass
class Response:
    response_text: str
    response_length: int
    prompt_length: int
    finish_reason: Literal["stop", "length"]


class BaseEngine(ABC):
luopl's avatar
luopl committed
38
39
40
41
42
43
    r"""
    Base class for inference engine of chat models.

    Must implements async methods: chat(), stream_chat() and get_scores().
    """

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
44
45
46
47
48
49
50
51
52
53
54
55
56
    model: Union["PreTrainedModel", "AsyncLLMEngine"]
    tokenizer: "PreTrainedTokenizer"
    can_generate: bool
    template: "Template"
    generating_args: Dict[str, Any]

    @abstractmethod
    def __init__(
        self,
        model_args: "ModelArguments",
        data_args: "DataArguments",
        finetuning_args: "FinetuningArguments",
        generating_args: "GeneratingArguments",
luopl's avatar
luopl committed
57
58
59
60
61
    ) -> None:
        r"""
        Initializes an inference engine.
        """
        ...
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
62
63
64
65
66
67
68

    @abstractmethod
    async def chat(
        self,
        messages: Sequence[Dict[str, str]],
        system: Optional[str] = None,
        tools: Optional[str] = None,
luopl's avatar
luopl committed
69
70
        image: Optional["ImageInput"] = None,
        video: Optional["VideoInput"] = None,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
71
        **input_kwargs,
luopl's avatar
luopl committed
72
73
74
75
76
    ) -> List["Response"]:
        r"""
        Gets a list of responses of the chat model.
        """
        ...
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
77
78
79
80
81
82
83

    @abstractmethod
    async def stream_chat(
        self,
        messages: Sequence[Dict[str, str]],
        system: Optional[str] = None,
        tools: Optional[str] = None,
luopl's avatar
luopl committed
84
85
        image: Optional["ImageInput"] = None,
        video: Optional["VideoInput"] = None,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
86
        **input_kwargs,
luopl's avatar
luopl committed
87
88
89
90
91
    ) -> AsyncGenerator[str, None]:
        r"""
        Gets the response token-by-token of the chat model.
        """
        ...
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
92
93
94
95
96
97

    @abstractmethod
    async def get_scores(
        self,
        batch_input: List[str],
        **input_kwargs,
luopl's avatar
luopl committed
98
99
100
101
102
    ) -> List[float]:
        r"""
        Gets a list of scores of the reward model.
        """
        ...