app.py 4.38 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

luopl's avatar
luopl committed
15
import asyncio
chenych's avatar
chenych committed
16
17
import os
from contextlib import asynccontextmanager
luopl's avatar
luopl committed
18
from functools import partial
chenych's avatar
chenych committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from typing import Optional

from typing_extensions import Annotated

from ..chat import ChatModel
from ..extras.misc import torch_gc
from ..extras.packages import is_fastapi_available, is_starlette_available, is_uvicorn_available
from .chat import (
    create_chat_completion_response,
    create_score_evaluation_response,
    create_stream_chat_completion_response,
)
from .protocol import (
    ChatCompletionRequest,
    ChatCompletionResponse,
    ModelCard,
    ModelList,
    ScoreEvaluationRequest,
    ScoreEvaluationResponse,
)


if is_fastapi_available():
    from fastapi import Depends, FastAPI, HTTPException, status
    from fastapi.middleware.cors import CORSMiddleware
    from fastapi.security.http import HTTPAuthorizationCredentials, HTTPBearer


if is_starlette_available():
    from sse_starlette import EventSourceResponse


if is_uvicorn_available():
    import uvicorn


luopl's avatar
luopl committed
55
56
57
58
59
60
async def sweeper() -> None:
    while True:
        torch_gc()
        await asyncio.sleep(300)


chenych's avatar
chenych committed
61
@asynccontextmanager
luopl's avatar
luopl committed
62
63
64
65
async def lifespan(app: "FastAPI", chat_model: "ChatModel"):  # collects GPU memory
    if chat_model.engine_type == "huggingface":
        asyncio.create_task(sweeper())

chenych's avatar
chenych committed
66
67
68
69
70
    yield
    torch_gc()


def create_app(chat_model: "ChatModel") -> "FastAPI":
luopl's avatar
luopl committed
71
72
    root_path = os.environ.get("FASTAPI_ROOT_PATH", "")
    app = FastAPI(lifespan=partial(lifespan, chat_model=chat_model), root_path=root_path)
chenych's avatar
chenych committed
73
74
75
76
77
78
79
    app.add_middleware(
        CORSMiddleware,
        allow_origins=["*"],
        allow_credentials=True,
        allow_methods=["*"],
        allow_headers=["*"],
    )
luopl's avatar
luopl committed
80
    api_key = os.environ.get("API_KEY", None)
chenych's avatar
chenych committed
81
82
83
84
85
86
87
88
89
90
91
92
93
    security = HTTPBearer(auto_error=False)

    async def verify_api_key(auth: Annotated[Optional[HTTPAuthorizationCredentials], Depends(security)]):
        if api_key and (auth is None or auth.credentials != api_key):
            raise HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail="Invalid API key.")

    @app.get(
        "/v1/models",
        response_model=ModelList,
        status_code=status.HTTP_200_OK,
        dependencies=[Depends(verify_api_key)],
    )
    async def list_models():
luopl's avatar
luopl committed
94
        model_card = ModelCard(id=os.environ.get("API_MODEL_NAME", "gpt-3.5-turbo"))
chenych's avatar
chenych committed
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
        return ModelList(data=[model_card])

    @app.post(
        "/v1/chat/completions",
        response_model=ChatCompletionResponse,
        status_code=status.HTTP_200_OK,
        dependencies=[Depends(verify_api_key)],
    )
    async def create_chat_completion(request: ChatCompletionRequest):
        if not chat_model.engine.can_generate:
            raise HTTPException(status_code=status.HTTP_405_METHOD_NOT_ALLOWED, detail="Not allowed")

        if request.stream:
            generate = create_stream_chat_completion_response(request, chat_model)
            return EventSourceResponse(generate, media_type="text/event-stream")
        else:
            return await create_chat_completion_response(request, chat_model)

    @app.post(
        "/v1/score/evaluation",
        response_model=ScoreEvaluationResponse,
        status_code=status.HTTP_200_OK,
        dependencies=[Depends(verify_api_key)],
    )
    async def create_score_evaluation(request: ScoreEvaluationRequest):
        if chat_model.engine.can_generate:
            raise HTTPException(status_code=status.HTTP_405_METHOD_NOT_ALLOWED, detail="Not allowed")

        return await create_score_evaluation_response(request, chat_model)

    return app


def run_api() -> None:
    chat_model = ChatModel()
    app = create_app(chat_model)
    api_host = os.environ.get("API_HOST", "0.0.0.0")
    api_port = int(os.environ.get("API_PORT", "8000"))
    print("Visit http://localhost:{}/docs for API document.".format(api_port))
    uvicorn.run(app, host=api_host, port=api_port)